
View links and download digital materials at niiexplore.ca 7.1

Subprograms and
defined count
Welcome to NII Explore’s Coding in the Classroom program for Grade 7
students. During the 4-week program, you and your class will complete:

• 3 online lessons
• 3 offline activities
• A final coding project

This teacher guide includes everything you need to get started!

THE GRADE 7 CODING CURRICULUM

As of 2020, Ontario’s math curriculum includes coding expectations. Put
simply, coding is when we write instructions, or “code”, for a computer to
follow. There are two core expectations that run through every grade level
of the coding curriculum.

1. Writing and executing code

2. Reading and altering existing code

Each grade level introduces students to a new coding skill. Students
can practice this new skill while also using the skills learned in previous
grades. In Grade 6, students practice making their code more efficient
(i.e., solving problems with the fewest lines of code).

GRADE 7 TEACHERS’ GUIDE

SCHEDULE AT A GLANCE

WEEK 1
• Online Lesson 1

Intro to Scratch
• Offline Activity 1

Defined Count Scavenger
Hunt

WEEK 2
• Online Lesson 2

Make a Maze Game
• Offline Activity 2

Songs with Subprograms

WEEK 3
• Online Lesson 3

Single-Player Pong
• Offline Activity 3

Video Game Design

WEEK 4
• Final Project

Make Your Own Game

GRADE 7 GRADE 8GRADE 6

Efficient Code Subprograms and
Defined Count

Analysis of Data

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.2

GRADE 7 introduces students to two new ideas that will
make their code even more efficient: subprograms and
defined count.

A subprogram, also called a function, is a section of
code that performs a specific task. We use subprograms
when there is a task that we know we will need to do
multiple times during our program. Instead of writing
the same instructions each time, we can put those
instructions in a subprogram and call on it when we
need it.

For example, we could write a subprogram that draws
a single square.

We can then use that subprogram in a larger program
to create an image with many squares.

Coding with subprograms. The main program on the
left calls the “draw square” subprogram 12 times to
create the image on the right.

In Scratch, subprograms are called “My Blocks” and
they are shown in PINK. Once a My Block has been
defined, it can be used just like any other block.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.3

Students also learn how to use a defined count in
Grade 7. We use defined counts in coding to tell a
loop how many times it should repeat. There are two
ways we can do this. We can have our loop repeat for a
specific number of times (often called a “for” loop) or
we can ask our code to repeat until a certain condition
is met (an “until” loop).

Two ways to define count. In the first example, our
sprite will move forward 10 steps and repeat that
action exactly 10 times. In the second case, the sprite
will keep moving forward until it touches the edge of
the screen.

We can also code our programs to wait for a specific
amount of time or until something happens. These are
all examples of control structures, and they are found in
the Control tab in Scratch.

Students have probably used the idea of a defined
count in their everyday lives, even if they were not
aware of it.

Defined counts are everywhere! We use defined
counts whenever we need to decide how long or how
often we will do something.

Bake cookies FOR 12 minutes
OR
Bake cookies UNTIL golden brown

Play soccer FOR another 5 minutes
OR
Play UNTIL someone scores

FOR LOOP UNTIL LOOP

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.4

PROGRAM SCHEDULE
The Coding in the Classroom program will last four weeks.
Here is a detailed guide of what you will be doing each week.

BEFORE WEEK 1

Read through this teacher guide, including the instructions for the three
online lessons. If you have time, you may want to try the online activities
for yourself.

Make sure your class has access to devices (laptops or tablets) for each of
the online lessons. Your class will also need devices for the final project.

WEEK 1

Online Lesson 1 – Intro to Scratch

This lesson introduces students to Scratch, an online coding platform.
Students will use a subprogram and a defined count to make their own
“clicker” game.

PREP Log onto computers and open Scratch. Ask students to “Join
Scratch” and make an account using their school email address.

POST Complete “Offline Activity 1 – Defined Count Scavenger Hunt” before
next online session.

See Page 7.6 for lesson instructions and Page 7.11 for a quick reference
guide.

Offline Activity 1 – Defined Count Scavenger Hunt

Your class will practice using two types of defined count in this friendly
competition.

See Page 7.15 for activity instructions.

WEEK 2

Online Lesson 2 – Make a Maze Game

In this activity, students will edit an incomplete Scratch file to make a
working game. Students will practice using a defined count and apply
transformations on a Cartesian plane.

PREP Have students log into their Scratch accounts and open
the activity link.

Week 2 Songs with
Subprograms

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.5

POST Complete “Offline Activity 2 – Songs with Subprograms” before
next online session.

See Page 7.18 for lesson instructions and Page 7.23 for
a quick reference guide.

Offline Activity 2 – Songs with Subprograms

Your students will quickly compose simple songs using the power of
subprograms.

See Page 7.27 for activity instructions.

WEEK 3

Online Lesson 3 – Single-Player Pong

Students will turn back the clock to make a single-player version of Pong.
The lesson will explore xy-coordinates and angles in addition to coding
concepts.

PREP Have students log into their Scratch accounts and open
the activity link.

POST Complete “Offline Activity 3 – Video Game Design” and the
Final Project.

See Page 7.30 for lesson instructions and Page 7.35 for
a quick reference guide.

Offline Activity 3 – Video Game Design

Students will prepare for their final coding project by completing a
Game Design Document.

See Page 7.40 for activity instructions.

WEEK 4

Final Project – Make Your Own Game

Students will apply their learning to make their own game in Scratch.
When they’re finished, they will share their projects for you to evaluate.

See Page 7.44 for project instructions.

AFTER WEEK 4

Keep the coding going with the additional resources on Page 7.49!

Week 3 Game Design
Document

Week 4 Final Project

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.6

ONLINE LESSON 1

Intro to Scratch
(Timed clicker game)
60 MINUTES

The three online lessons and final project all use Scratch. If you are new to
Scratch, you may want to check out their “Getting Started” tutorial.

In this lesson, you will introduce students to Scratch and have them make
their own accounts. The goal is to familiarize students with Scratch and some
of its basic commands. Along the way, students will use defined count and a
subprogram to make a timed clicker game.

Subprograms (known as “functions” in most programming languages)
are sections of code that perform a specific task. In Scratch, we can make
subprograms by creating “My Blocks”. Check out this video tutorial to learn
more about My Blocks.

The lesson will also introduce defined count. “Defined count” is not a
commonly used coding term outside of the Ontario curriculum. Within the
curriculum, however, count means the number of times that a loop repeats,
and it can be defined in two ways. We can specify an exact number of repeats
using a for loop or have it repeat until a certain condition is met (an until
loop).

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing efficient code,
including code that involves events influenced by a defined count and/or
subprogram and other control structures

• Math C3.2 – read and alter existing code, including code that involves
events influenced by a defined count and/or subprogram and other
control structures, and describe how changes to the code affect the
outcomes and the efficiency of the code

OPERATIONS

• Math B2.4 – use objects, diagrams, and equations to represent, describe,
and solve situations involving addition and subtraction of integers

QUICK LINKS

Student Activity Link
scratch.mit.edu

Finished Example
scratch.mit.edu/
projects/818521004

PowerPoint
Grade 7 – Week 1 – Intro to
Coding

Quick Reference
Intro to Scratch (Timed
Clicker Game) – Quick
Reference

http://niiexplore.ca
https://scratch.mit.edu/ideas
https://www.youtube.com/watch?v=Q0JecvzwyIg
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818521004
https://scratch.mit.edu/projects/818521004
https://scratch.mit.edu/projects/758913184

View links and download digital materials at niiexplore.ca 7.7

LESSON BREAKDOWN

SLIDE 1 - SET UP AND INTRODUCTION

Open the PowerPoint slides and Scratch links on your
own computer. Project for the students to see. Open
or print the Intro to Scratch (Timed Clicker Game) -
Quick Reference for your own use during the lesson.

SLIDE 2 - WHAT IS CODING?

Check if your students have coding experience and if
they’ve used Scratch before. Ask them what coding
means (coding is when we give instructions to a
computer).

SLIDES 3 AND 4 - WHAT TO EXPECT

Your class will complete three online lessons (using
Scratch), three offline activities, and a final project
(make their own game).

If your students make a game that they are particularly
proud of, please share it with us at explore@nii.ca.
NII Explore periodically awards prizes to some of our
favourite coding projects.

SLIDE 5 - READY TO START

Have students open the student activity link on their
devices. It should take them to the Scratch home page.

MAKING SCRATCH ACCOUNTS

Start the first week by having all the students make
Scratch accounts. This will let them save their projects
and access them at home or on another day. It may
take a few minutes but will be worthwhile in the long
run.

Click “Join Scratch” in the top right. Create a username
and password. Have students choose a username that
will be easy for them to remember.

For their password, they should choose something that
is hard to guess. As an added measure, encourage them
to write down their login credentials in a safe place.

It is not the best practice from a security standpoint,
but for simplicity, they could use the same password
that they use to log into their computers.

If their username is taken, have them add numbers
at the end of it.

They do not need to give out their personal details
other than an email address. Students can use their
school email address.

If students already have Scratch accounts, they can log
into them to start.

DEMO

Show the finished game to give students an idea of
what they are working towards. You can make your own
game or use this one:

scratch.mit.edu/projects/818521004

Click the four arrows icon to make the game full screen
then click the green flag to start. See how many times
you can click on the bat before the timer runs out.

TOUR OF SCRATCH

NOTE: If students have used Scratch before,
you can speed through this part.

Have students create a new project then give them a
tour of Scratch. Show them where the coding window
and preview window are, and where they can access
blocks for their code. See Page 7.12 for more details.

http://niiexplore.ca
mailto:explore%40nii.ca?subject=
https://scratch.mit.edu/projects/818521004
https://scratch.mit.edu/projects/758913184

View links and download digital materials at niiexplore.ca 7.8

CHOOSING A SPRITE AND BACKDROP

Have students choose a backdrop (bottom right
corner).

Have students delete the default cat sprite (garbage
can beside the sprite icon in the bottom right) and
pick a new sprite (blue cat button in bottom right).
Ask students to share which backdrop and sprite they
picked so you know when they’re ready to move on.

CREATE SCORE VARIABLE

We want to be able to keep score in our game. The
score is something that can change or “vary” which
is why we call it a variable. We use variables to store
single pieces of data.

Go to Variables and then “Make a Variable”.
Name it “Score”.

You can also delete the default “my variable” by
right-clicking on it and choosing “delete”.

INITIALIZE SCORE - STEP 1 IN QUICK REFERENCE

Ask students “What should the score be when we
start a new game?” (Zero).

Add “when green flag clicked” to begin the program.

Then add “set Score to 0” right after the green flag
block.

Now the score will be reset to 0 whenever you click
the green flag to start a new game.

SCORING POINTS - STEP 2 IN QUICK REFERENCE

From Control, add “when this sprite clicked” then
“change Score by 1”.

The score will go up by 1 every time the target sprite
is clicked.

TEST THE GAME

Have the students test the game – does the score go
up? Does it reset to 0 when you start a new game?

When everyone is ready, run a friendly competition
with the students. See who can get the most clicks in 10
seconds. Ask them to share their scores.

PULSE SUBPROGRAM - STEP 3 IN QUICK REFERENCE

Now we will create a subprogram to make the sprite
pulse (grow then shrink) when clicked.

Go to My Blocks then Make a Block called pulse.
A define pulse pink block will appear in the coding
area. Under define pulse add change size by 10 → wait
0.05 seconds → change size by -10 [Step 3a]. Click the
newly created block to see what it does.

Finally, add the new pulse block to your program under
“when this sprite is clicked” [Step 3b].

MOVING SPRITE - STEP 4 IN QUICK REFERENCE

To make the game harder, let’s make the sprite move
around the screen.

Under the green flag section, add a “forever” loop
(found in Control) then put “go to random position”
(found in Motions) inside the loop [Step 4].

Have students test the game and see what happens.
The sprite moves way too fast, but students find it
funny.

SLOWING DOWN - STEP 4 CONTINUED

ASK: How can we make it go slower?

HINT: Check out the options in Control.

Answer: Add “wait 1 seconds” after “go to random
position”.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.9

TEST AGAIN

Have students test their games again. They can tweak
the wait time between sprite movements to suit their
tastes. For example, they could set the wait time to
something like 0.8 seconds if they want the game to be
a bit harder.

Testing the games regularly helps keep the students
engaged, but it’s also good practice to test code often
to spot mistakes early.

SETTING TIMER - STEP 5 IN QUICK REFERENCE

Students will now add a timer, so their games don’t
go on forever.

Create a new variable called “Timer”. The timer variable
should now appear in the top left corner of the game
window. You can leave it there or you can drag the
timer readout to the top right corner and change it to
“large readout”. You can do this by double clicking or
right clicking on the timer display.

Next, add the following code under a new “when green
flag clicked” block. Ask students what they think
should come next as you build out this timer code. For
example, ask them when you should repeat until or
what we should change the timer by.

when green flag clicked → set Timer to 10 → repeat
until “Timer = 0” → wait 1 second → change Timer by
-1 [Steps 5a and 5b]

They can now test that the timer does indeed
count down.

ENDING GAME - STEP 6 IN QUICK REFERENCE

Finally, we will want the sprite to disappear and stop
moving once the timer expires. Underneath the timer
code, add hide → stop “other scripts in sprite”.

You will also need to add a show block at the very start
of your program. You can either tell students that or
have them figure it out on their own.

TEST

Have students play a few games and have them report
their scores back to you.

ASK: Why do you think we set our timer to 10 for
testing? (So that testing doesn’t take too long. We can
increase the timer once we know that our game works).

OPTIONAL - ADD A SECOND SPRITE TO REPORT
THE SCORE - STEPS 7 AND 8 IN QUICK REFERENCE

If time allows, you can add a second sprite to report the
score at the end of the game.

Create and initialize the sprite

Have students pick a new sprite, set its size, and drag
it to an appropriate position on the screen. To its code,
add when green flag clicked → hide (This sprite should
not be visible until the timer runs out) [Step 7].

Add a broadcast message

Switch back to the main sprite’s code. You will add
a new broadcast message called “game over”. Add
broadcast (game over) after the part of the code
where the timer runs out [Step 8a].

Switch back to your “reporter” sprite and add when I
receive game over to its code.

Reporting score

After “when I receive game over”, add wait 1 seconds →
show → say “Time’s up!” for 2 seconds → say (Score
variable) [Step 8b].

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.10

FINAL TEST

Give students time to play through their games, try
each other’s games, or share with you and the rest of
the class.

OPTIONAL ADD-ONS

Suggest some extra things students could add
to their games.

• Change time: How long should the game last?

• Change sprite size: Sprite gets smaller each time
it’s clicked or just starts and stays smaller

• Change speed: Make the wait time shorter or

longer

• Add extra sprites: Copy the movement and
scoring code over to a new sprite. Perhaps this
sprite is smaller or moves faster and is therefore
worth more points.

SLIDE 7 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they learned. What
is another name for a My Block? (Subprogram or
Function). Why did we use a “repeat until” loop instead
of a simple repeat? (Timer needs to count down until
we reach 0 no matter what it started at).

SLIDE 8 - POEM OF THE DAY

Each slideshow ends with a Poem of the Day to recap
the lesson. Introduce the concept of the Poem of the
Day then read the poem together.

SLIDE 9 - WHAT’S NEXT?

Let students know when you will be coding again.
We recommend alternating between the online lessons
and the offline activities. It requires less screen time for
your class and will give students more time to absorb
the new information.

Quickly preview what you will be doing next week. You
will be making a game where students can control their
sprite’s movement.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.11

QUICK REFERENCE

Intro to Scratch
(Timed clicker game)
After making Scratch accounts, you will give students a tour of Scratch
and introduce them to some basic commands. The goal is to familiarize
students with Scratch and block-based coding. By the end of the class,
each student will have made a simple clicker game with a timer.

SET UP

• Have students open Scratch and either create a new account
or log into an existing one

• Open Scratch on your own computer and create a blank project.
Open the finished version of the game as a demo

QUICK LINKS

Student Activity Link
scratch.mit.edu

Finished Example
scratch.mit.edu/
projects/818521004

http://niiexplore.ca
https://scratch.mit.edu/projects/762738355
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818521004
https://scratch.mit.edu/projects/818521004

View links and download digital materials at niiexplore.ca 7.12

Switch between
code and costumes

Coding Block
categories

Choose a coding
block

Coding
 window

List of
sprites

Sprite
properties

Choose a
sprite

Choose a
backdrop

Rename project

Which sprite am
I editing?

Start/stop
program Preview

window
Show project

full screen

SCRATCH TOUR

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.13

THE CODE

This document shows the finished code with annotations explaining what
each section does and a suggested order for the lesson. Check out the
lesson plan on Pages 7.7 to 7.10 for a more detailed breakdown of the
lesson.

SPRITE #1 – MOVING SPRITE
This sprite moves randomly around the screen and the player clicks on
it to score points.

Step 1. Initialization – At the start
of the program (green flag), sprite
appears, and score is reset to 0.

Step 2. Player scores a point every
time this sprite is clicked.

Step 3b. Add new pulse block into
main program after defining it.

Step 3a. Definition for the “pulse”
My Block (subprogram)

Sprite grows a bit, waits a moment,
then shrinks back to starting size.

Step 4. Sprite is forever moving
to a random position, waiting 1
second, then moving again. This loop
won’t end until it receives a “stop”
command.

Students can change the wait time to
suit their taste.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.14

Step 5a. Set the starting time for
the timer. Students can change
this later, but we use 10 seconds
for testing purposes.

Step 5b. Wait 1 second then decrease
the timer by 1. Repeat this process until
the timer reaches 0.

Step 6. Hides the sprite and stops its
movement after the timer reaches 0.

OPTIONAL
Step 8a. Send a “game over”
message to trigger the “reporting”
sprite.

OPTIONAL SPRITE #2 – REPORTING SPRITE

This sprite pops up at the end of the game to tell the player their score. It is
an optional extension if you have time at the end of the lesson in lieu of a
simple “Game Over” message.

Step 7. Initialization – Sprite should hide
when the game begins.

Step 8b. When this sprite
receives the “game over”
broadcast message (sent when
the timer expires), it will wait
for 1 second (optional) then
appear.
The sprite then announces
that time is up (or something
similar) using a say block then
reports the player’s score.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.15

OFFLINE ACTIVITY 1

Defined count
scavenger hunt
30–45 MINUTES

Students will explore two types of defined count – FOR loops and UNTIL
loops – in this friendly competition.

LEARNING OBJECTIVES

• Understand the difference between the two types of defined count
• Demonstrate movement skills

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)

SET-UP

This activity requires some space. Consider moving to the gym or outside, or
push desks out of the way. Collect required materials.

INSTRUCTIONS

SUMMARY
Teams of two will be competing against each other to find bean bags (or
similar items). Each team will have a blindfolded “robot” collecting the items
and a “coder” telling them where to search. The team that collects the most
items wins the round. Some rounds will require the coder to use FOR loops,
others will use UNTIL loops.

1. Ask students to recall what they learned in the online coding classes.
ASK “What is coding?” (Giving instructions to a computer) “What are the
two types of loop we used? How are they different?” (FOR loops specify
an exact number of repeats, UNTIL loops repeat until a certain condition
is met)

2. Explain the premise of the activity. “Today we will be coding, but instead
of giving instructions to a computer, you will tell each other what to do.”

MATERIALS

The class will need:

• Small objects like bean
bags

• A large, open space

• Optional – Blindfolds

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.16

3. Move to a large, open space (recommended) or
rearrange your classroom to create space.

4. Divide students into partners. Have the students
choose who will be the Coder (person giving
instructions) and who will be the Robot (person
receiving instructions) for the first round. Explain
that the Robot will have their eyes closed (or be
blindfolded). You will place bean bags or similar
items around the playing area. The Coder’s job is to
tell their partner where to go.

5. ROUND 1 Have the teams spread out around
the edge of the playing area. For this first round,
explain that the Coders can only give instructions
using FOR loops. That is, their instructions must
include specific numbers. For example, they
might say “Take 3 steps forward” or “Turn right 90
degrees”. Try a few examples with the whole class.

6. The Robots won’t be able to see during this activity
so it’s important to do a safety briefing before you
begin. Remind students to walk slowly and with
their arms extended. You will also need a keyword
that gets everyone to freeze. In some coding
languages (Python, for example), the command
“Quit” is used to end a program. Tell the Coders
that they should yell “QUIT” if they see a collision
about to happen. The Robots should all freeze
in place until you tell them to “RESUME” again.
Practice this a few times with the whole class.

7. Ask the Robots to close their eyes (or blindfold
them) then scatter the bean bags around the
playing area. When you’re ready, start the game.
Let the students play until most of the bean bags
have been collected. Whichever team collects the
most bean bags wins the round.

 NOTE If you have a large class or a smaller space,
you may need to play this in multiple heats
(i.e., not every team plays at the same time).

8. ROUND 2 Reset the game and have students switch
roles (i.e., Coder becomes Robot and vice versa).
Explain that Coders can now only use UNTIL loops
– they may not use specific numbers. For example,
they could say “Walk forward until I say stop” or
“Lean over until you touch the ground.”

9. Start the second round. At the end, ask students to
reflect on their experience so far with the following
discussion questions.

 • Did you prefer being the Robot or the Coder?
 Why?

 • Which type of instructions did you find easier
 to give? Easier to follow?

10. ROUND 3 For the third round, let students decide
who will do which role. This time, the Coder can
mix and match their instructions. They can use both
FOR loops and UNTIL loops.

11. You can play additional rounds if time allows. For
example, students may switch partners or you
could introduce additional twists like multiple
Coders controlling the same Robot.

12. When you’re done, debrief the activity using the
following discussion questions as a guide.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.17

DISCUSSION QUESTIONS

What are the two types of loop we used? What’s the
difference?

Answer: FOR loops specify an exact number of repeats,
UNTIL loops repeat until a certain condition is met.

Which round did you find the easiest? What was your
winning strategy?

Do you prefer giving instructions to a computer or to a
person? Why?

Possible answers: Computers because they can execute
tasks faster and will do exactly what you tell them.
Humans because they can interpret what you mean even
if your instructions aren’t perfect.

Games are a good example of the two loop types.
Can you think of a game that is played for a specific
amount of time? What about a game that’s played
until a certain condition is met?

Examples: Sports like hockey, soccer, and basketball are
played for a set amount of time. Volleyball, tennis, and
badminton are played until a certain score is reached.
Some video games have a time limit, while others (e.g.,
tetris) go until the player loses. Jenga is played until the
tower falls. Monopoly is played until there is one player
left.

Recipes are another good example of everyday
instructions. What would a recipe with FOR loops
sound like? What about UNTIL loops?

Possible answers: Cook onions for 5 minutes vs Cook
onions until they start to brown.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.18

ONLINE LESSON 2

Make a maze game
60 MINUTES

Students will modify (“remix”) an existing Scratch file to create their own
maze game called “The Walls are Made of Lava”. The maze is designed so
that students will have to add new code to complete each level. Students
will use conditional statements, subprograms, and defined count, while
also learning about three types of transformation (translations, rotations,
and dilations).

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing efficient code,
including code that involves events influenced by a defined count and/
or subprogram and other control structures

• Math C3.2 – read and alter existing code, including code that involves
events influenced by a defined count and/or subprogram and other
control structures, and describe how changes to the code affect the
outcomes and the efficiency of the code

GEOMETRIC AND SPATIAL REASONING

• Math E1.3 – perform dilations and describe the similarity between the
image and the original shape

• Math E1.4 – describe and perform translations, reflections, and
rotations on a Cartesian plane, and predict the results of these
transformations a Cartesian plane, and predict the results of these
transformations

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/760367848

Finished Example
scratch.mit.edu/
projects/818518940

PowerPoint
Grade 7 – Week 2 – Events

Quick Reference
Make a Maze Game (Lava)
Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/projects/760367848
https://scratch.mit.edu/projects/760367848
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818518940
https://scratch.mit.edu/projects/818518940
https://scratch.mit.edu/projects/759070219

View links and download digital materials at niiexplore.ca 7.19

LESSON BREAKDOWN

SET UP

Open the PowerPoint slides and the Scratch links on
your own computer. Project for the students to see.
Open or print the Make a Maze Game (Lava) - Quick
Reference for your own use during the lesson.

Get the students logged onto their computers with the
activity link open.

SLIDES 1 AND 2 - WEEK 1 RECAP

Ask students to remember what they learned about
in the first coding lesson. “We made this clicker game
using a subprogram (pulse) and a defined count for our
timer (repeat until timer = 0). It was a good beginner
game, but our sprite moved randomly. In most video
games, the player gets to control how their character
moves.”

SLIDES 3 TO 5 - HISTORY MINUTE

Use the slides to explain “events” in coding with video
games as an example. See slide notes for talking points.

DEMO

Quickly show students what the completed maze game
looks like to give them an idea of what they are working
towards (We recommend using Level 3 as the demo.
You can switch the level by going to “Looks”, choosing
“switch backdrop to Level 3” then clicking the block).

Link to finished game:
scratch.mit.edu/projects/818518940

SLIDE 6 - LOG INTO SCRATCH

Have students log into their Scratch accounts
and open the activity link.

Have them click “Remix” to make their own version
of the project.

When they open the project, it should be set to Level 1
(maze is a straight line).

LEVEL 1 - PICK A TARGET SPRITE

Have students create a new sprite to be the target. In
our finished example, the target is “Cheesy Puffs”.

Ask students to share what they picked so you know
they’re ready.

INITIALIZE THE TARGET SPRITE

Change size of target sprite to make it fit inside the
maze. “100 is the default size, set the size to a smaller
number to make it smaller.” You can edit the size in the
sprite properties area.

Drag the target sprite to the end of the maze.

NOTE: We don’t write any code for the target sprite.

DEFINE COUNT - STEP 1 IN QUICK REFERENCE

Now we will use defined count to build our main
code. In the code for the rocket ship, we have pre-set
a “repeat until” loop. Ask students when the game
should repeat until. In other words, what is the goal?

Answer: In the code for the rocket ship, go to Sensing
and add “touching (target sprite)” to the “repeat
until” block [Step 1]. Explain: “We want the game to
keep running until our spaceship reaches the target.”

http://niiexplore.ca
https://scratch.mit.edu/projects/818518940
https://scratch.mit.edu/projects/760231357

View links and download digital materials at niiexplore.ca 7.20

ENABLE LEFT/RIGHT TRANSLATIONS - STEP 2 IN
QUICK REFERENCE

Now it’s time to make our sprite move. We want our
player to be able to control the sprite just like the
earliest video games.

Point out the define enable translations block. Ask
students if they remember what translations are from
math class (translations are when we shift a shape left/
right/up/down).

Under “define enable translations” we have pre-
populated two conditional statements for the right/left
arrows. It’s up to the students to figure out what they
should put inside the if-then blocks. Give them some
time to do this.

Answer: if key (right arrow) pressed? then → change
x by 4 and if key (left arrow) pressed? then → change
x by -4 [Step 2].

The default is to change x by 10, but we recommend
using 3 or 4 to allow finer control when navigating the
maze. The spaceship will move too quickly if you use
bigger values.

PRELIMINARY TESTING

Let students test their left and right arrows by
completing the first level. After they reach the target
sprite, a broadcast message called “level complete” is
sent. A text sprite is pre-programmed to appear when it
receives this message.

LEVEL 2

Have students change the backdrop to Level 2. They
can do this by going to Looks and then clicking “next
backdrop” or they can click on “Backdrops” in the
“Stage” area and change to the Level 2 backdrop.

ACTIVATE THE LAVA - STEP 3 IN QUICK REFERENCE

This game is called “The Walls are Made of Lava” but
so far the lava doesn’t actually do anything. Show the
students that you can fly right through the barriers.

To activate the lava, we will need to use a conditional
statement. Inside the “repeat until” loop and after
“enable translations”, add if touching color (orange)?
then.

To make sure students select the correct shade of
orange, click on the colour in the light blue sensing
block then use the eyedropper tool to set it to the same
colour as the walls.

This conditional will sense if the rocket ship is touching
the orange lava. Next, we need to tell the rocket what to
do when this happens. We are going to send
our ship back to the start.

Add go to x: (-196) y: (-8) → point in direction (180)
→ wait 0.5 seconds [Step 3] into the conditional
statement. This code will send the ship back to the
starting position and wait momentarily so the ship
doesn’t immediately start moving again.

Students could also choose to add a sound effect as
an audio cue that they’ve hit the wall (e.g., play laser2
until done).

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.21

Have students test by intentionally flying into the
wall. Does their ship get sent back to the start? If not,
the most common issue is that their shade of orange
doesn’t exactly match the walls. Remind them to use
the eyedropper tool when setting the colour.

ENABLE UP/DOWN TRANSLATIONS - STEP 4 IN
QUICK REFERENCE

To beat Level 2, students will need to make their ship
move up and down. Tell them that they will need to
add two new if-then statements to their define enable
translations block. Give them some time to figure it
out on their own before going over the answer as a
class.

Answer: if up arrow pressed? then → change y by 4
and if down arrow pressed? then → change y by -4
[Step 4].

Have students test their new code by trying to beat
this level.

NOTE: The most common mistake is that they’ve
mixed up their x’s and y’s. Remind students that x is the
horizontal axis and y is the vertical axis.

LEVEL 3 – ROTATIONS

Have students change the backdrop to Level 3. They
can do this by going to Looks and then clicking “next
backdrop” or they can click on “Backdrops” in the
“Stage” area and change to the Level 3 backdrop.

ENABLE ROTATIONS - STEP 5 IN QUICK REFERENCE

To beat Level 3, students will need to use a different
kind of transformation. Ask students what kind of
transformation they could use (rotation).

We already have a My Block (subprogram) for
translations; now we will create one for rotations. Go
to “My Blocks” then “Make a Block” and call it enable
rotations. A block called define enable rotations will
appear in your coding area.

Give students a chance to try figuring out what code
they could add.

HINT: It will be very similar to the code we used for
translations, just with different keys and a different
blue movement block.

Answer: Add two if-then statements to define the
enable rotations block. Choose two keys (e.g., Z and
C because they can be controlled with the left hand
easily) to represent counterclockwise and clockwise
rotation. Add the appropriate “turn ___ degrees”
blocks.

NOTE: A smaller number of degrees will be easier
to control.

Example Solution: if key (z) pressed? then → turn
 4 degrees and if key (c) pressed? then → turn 4

degrees [Step 5a]

IMPORTANT: Students also need to add their new pink
“enable rotations” block into the main program under
enable translations [Step 5b]. It can be found in My
Blocks.

TEST AGAIN

Have the students test their latest controls (translations
and rotations) by completing Level 3. Challenge them
to see how fast they can go as you wait for the rest of
the class to catch up.

LEVEL 4 – DILATIONS

Have students change the backdrop to Level 4. They
can do this by going to Looks and then clicking “next
backdrop” or they can click on “Backdrops” in the
“Stage” area and change to the Level 4 backdrop.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.22

ENABLE DILATIONS - STEP 6 IN QUICK REFERENCE

Ask students to identify the problem (Our rocket ship is
too big).

What can we do to solve the problem? (Make it smaller).
In math and geometry, what’s it called when we make a
shape larger or smaller? (Dilation).

Like before, go to My Blocks and create one called
enable dilations. Again, give students a chance to try
figuring out the code for themselves.

HINT: They will need to pick keys to use and then use a
certain purple Looks block.

Answer: if key (d) pressed? then → change size by -1
and if key (a) pressed? then → change size by 1 [Step
6a].

NOTE: Students can choose any keys that have not yet
been used. Encourage them to write down which key
does what somewhere.

IMPORTANT: Students also need to add their new
pink “enable dilations” block into the main program
under enable rotations [Step 6b]. It can be found in My
Blocks.

TEST AGAIN

Have the students test all their controls (translations,
rotations and dilations) by completing Level 4.
Challenge them to see how fast they can go as you wait
for the rest of the class to catch up.

BONUS - CUSTOM LEVELS

At this point, the game should be fully functional and
you can definitely stop here if you are running low on
time. If you only have a few minutes left before you
start the wrap up, encourage students to test out each
other’s games or tinker with their own controls.

If time permits, it’s fun for students to create their
own level.

In backdrops, you’ll find Level 5. This level has a
starting area for the spaceship, but it doesn’t have a
path. Students can create their own path using either
the rectangle tool or the paintbrush tool. The colour
should be pre-set to black, but any colour will work as
long as it’s not the colour of the orange lava.

Give students a chance to share their games with
each other.

Finally, they could make their game automatically
cycle through all the levels by putting all of their main
program inside a repeat (number of levels) loop with
a next backdrop block at the end. See Steps 7a and 7b
in Quick Reference.

SLIDE 6 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they learned, ask if anyone
can remember the three types of transformation we
used (translations, rotations, dilations).

Ask what the My Blocks are called in coding
(subprograms or functions).

What is an event? (Some input like pressing a button
or joystick that affects our program).

SLIDE 7 - POEM OF THE DAY

Share this week’s poem as a recap.

SLIDE 8 - WHAT’S NEXT?

Quickly preview what you will be doing next week.
The students will be turning back the clock to make an
arcade classic.

Try Offline Activity 2 - Songs with Subprograms
before the next online lesson.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.23

QUICK REFERENCE

Make a maze game
Students will modify (“remix”) an existing Scratch file to create their own
maze game called “The Walls are Made of Lava”. The maze is designed so
that students will have to add new code to complete each level. Students
will use conditional statements, subprograms, and defined count, while also
learning about three types of transformation (translations, rotations, and
dilations).

SET UP

• Have students log into their Scratch accounts and open the student link

• Open both the student version and the finished game on your computer.
You will demo the finished version then work from the student version.

THE CODE

Here is the final code for each sprite. Areas in GREY are pre-coded for the
students. Steps marked in PINK need to be added during the lesson.
See the lesson plan on Pages 7.19 to 7.22 for detailed instructions

NOTE: We will not be writing any code for the target sprite.

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/760367848

Finished Example
scratch.mit.edu/
projects/818518940

http://niiexplore.ca
https://scratch.mit.edu/projects/760231357
https://scratch.mit.edu/projects/760367848
https://scratch.mit.edu/projects/760367848
https://scratch.mit.edu/projects/760367848
https://scratch.mit.edu/projects/818518940
https://scratch.mit.edu/projects/818518940

View links and download digital materials at niiexplore.ca 7.24

LEVEL COMPLETE SPRITE

SPACESHIP SPRITE - MAIN PROGRAM

Step 7a. (Optional) Advance through
the levels (backdrops) after each
one finishes. Number in loop should
equal the total number of backdrops.

This sprite is pre-made and coded for
the students.

Sprite will hide when game begins
and only appear once the player has
reached the target sprite and the
corresponding broadcast message
has been sent.

Step 1. Define count by setting this
end condition. Loop will repeat until
reaching target sprite.

Step 5b. Remember to add this to
the main program after writing the
rotations subprogram.

Step 6b. Remember to add this to
the main program after writing the
dilations subprogram.

Initializes sprite size, position,
direction, and visibility.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.25

Step 2. Fill in these two
conditional statements to
enable left/right translations.

Step 4. Add these two
conditional statements to
enable up/down translations.

SUBPROGRAM 1 - TRANSLATIONS

Step 3. Send the spaceship
back to its starting position if
it touches the orange “lava”
walls at any point.

Sends a signal to the “Level
Complete” sprite after the
target is reached.

Step 7b. (Optional) Advance
through the levels (backdrops)
after each one finishes.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.26

Step 5a. Allows the sprite
to rotate clockwise and
counterclockwise.

Step 6a. Allows the sprite
to grow and shrink.

SUBPROGRAM 2 - ROTATIONS

SUBPROGRAM 3 - DILATIONS

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.27

OFFLINE ACTIVITY 2

Songs with
subprograms
45 MINUTES

Quickly compose simple songs using subprograms!

LEARNING OBJECTIVES

• Understand how to write and use subprograms
• Experiment with song structures

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Arts C1 (Creating and Performing Music)

SET-UP

Instruments are optional but not required. If you don’t use instruments,
students can make percussion songs using claps, stomps, snaps, etc. Print
and hand out worksheets.

INSTRUCTIONS

SUMMARY
The parts of a song (verse, chorus, bridge, etc.) are an everyday example of
subprograms. Students will compose these musical subprograms before
assembling them into a larger song.

1. Ask students to recall what they learned in the online coding classes.
ASK “What is a subprogram?” (A section of code that completes a specific
task) “Why do we use subprograms?” (It makes our code shorter and
faster to write because we don’t need to write the same instructions
multiple times)

2. Explain the premise of the activity. SAY “In the first part of this activity,
you and your group will write three different parts of a song – a verse,
a chorus and a bridge. These parts are like subprograms in coding. In
the second half of the activity, we will put the parts (i.e., subprograms)
together to make an entire song (i.e., main program).”

MATERIALS

Each student will need:

• 1 worksheet

• Optional - Small musical
instruments like shakers
or kazoos

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.28

3. Discuss the three song parts.

 The verse is usually how the song starts. It sets
the tone for the song. The chorus is the main idea
of the song. It often repeats several times and it’s
the catchiest part of the song. A bridge is used to
connect other song parts. It sounds different to the
other parts and adds variety to the song.

Part 1 – Writing subprograms

4. Demonstrate what a song part (i.e., subprogram)
might sound like by clapping out a pattern. For
example, the song “We Will Rock You” has a simple
and easily recognizable clapping pattern.

5. Split students into groups of 2 or 3. Each group will
compose a verse, a chorus and a bridge. They will
use their worksheets to keep track of their ideas.
For simplicity, their songs do not need any lyrics;
just percussion is fine. Give students time to write
their three song sections.

Part 2 – Making main programs

6. You will now give students a song structure (i.e.,
main program). They will plug their song elements
into your structure to make a complete song. Begin
with this common song structure:

 Verse
 Chorus
 Verse
 Chorus

7. Circle the room and help students as needed. Have
them perform their songs for you.

8. Write some more song structures on the board
for the students to use. Other common structures
include:
Verse
Verse
Chorus
Verse

Verse
Chorus
Verse
Chorus
Bridge
Chorus

9. If time allows, have students perform their songs
for the class. They may also choose to come up with
their own song structure.

10. Debrief the activity using the discussion questions
as a guide.

CROSS-CURRICULAR CONNECTION

As an extension to the music curriculum, you could ask
students to identify the parts (verse, chorus, bridge,
etc.) of their favourite songs.

DISCUSSION QUESTIONS

What do the song sections (verse, chorus, bridge)
represent in coding?

Answer: subprograms.

What does our song structure represent?

Answer: the main program.

Why did we write our song parts first? How did that
help us?

Possible answers: It made our songwriting more efficient
because we could make many different songs using the
same parts. We didn’t need to write out the same chorus
multiple times.

Lots of popular songs use the same song structure.
Why do you think that is? Do you think coders borrow
from each other’s programs?

Possible answers: Certain structures are known to
work (i.e., it sounds good). Coders borrow things like
subprograms (functions) that are known to work well.

http://niiexplore.ca

niiexplore.ca 7.29

Songs with subprograms
ACTIVITY 2 WORKSHEET

You will start by writing three different parts of a song – a verse, a chorus, and a bridge.
Later, you will combine those parts to make a complete song.

Write notes to help you
remember your verse.

Example:

Clap x2, slap knees x2, stomp
left foot then right foot x4,
knees once, clap once, knees
x2, snap fingers.

Write your chorus here. It
should be different than the
verse. The chorus is usually the
“catchiest” part of a song.

Write your bridge here. The
bridge often sounds quite
different than both the verse
and the chorus. For example,
you could make it slower or use
different sounds.

VERSE

CHORUS

BRIDGE

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.30

ONLINE LESSON 3

Single-player Pong
60 MINUTES

Students will turn back the clock to make their own version of Pong. In
this single-player game, players will keep a bouncing ball up for as long
as possible. Students will write a “bounce” subprogram, build control
structures with loops and conditional statements, and apply some
important math concepts.

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing efficient code,
including code that involves events influenced by a defined count and/
or subprogram and other control structures

• Math C3.2 – read and alter existing code, including code that involves
events influenced by a defined count and/or subprogram and other
control structures, and describe how changes to the code affect the
outcomes and the efficiency of the code

OPERATIONS

• Math B2.1 – use the properties and order of operations, and the
relationships between operations, to solve problems involving whole
numbers, decimal numbers, fractions, ratios, rates, and percents,
including those requiring multiple steps or multiple operations

GEOMETRIC AND SPATIAL REASONING

• Math E1.4 - describe and perform translations, reflections, and
rotations on a Cartesian plane, and predict the results of these
transformations

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/762298370

Finished Example
scratch.mit.edu/
projects/818524819

PowerPoint
Grade 7 – Week 3 –
Video Game History

Quick Reference
Single-Player Pong
– Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/projects/762298370
https://scratch.mit.edu/projects/762298370
https://scratch.mit.edu/projects/818524819
https://scratch.mit.edu/projects/818524819
https://scratch.mit.edu/projects/762141005

View links and download digital materials at niiexplore.ca 7.31

LESSON BREAKDOWN

SLIDE 1 - WEEKS 1 AND 2 REVIEW

Open the PowerPoint slides and the Scratch links
on your own computer. Project for the students to
see. Open or print the Single-Player Pong - Quick
Reference for your own use during the lesson.

Ask students if they remember what a subprogram is
(A section of code that performs a specific task) Why do
we use them? (To make our code cleaner to read and
to save us from having to write the same code many
times).

SLIDES 2 TO 7 - HISTORY MINUTE

Use slides to discuss the history of video games,
specifically Pong. See the slide notes for talking points.

DEMO

Quickly show students what the completed game looks
like to give them an idea of what they are working
towards.

Link to finished game:
scratch.mit.edu/projects/818524819

SLIDE 8 - LOG INTO SCRATCH

Have students log into their Scratch accounts and
open the activity link.

Have them click “Remix” to make their own version
of the project.

They can also rename their projects to something
of their choosing.

MOVE THE PADDLE BACK AND FORTH -
STEP 1 IN QUICK REFERENCE

Four sprites are pre-made for the students including
the paddle sprite. To make the paddle move left
and right students will need to fill in the conditional
statements. This should be review for them because
they did something very similar in Week 2 (Lava Game).

Answer: if key (right arrow) pressed? then → change
x by 10 and if key (left arro)] pressed? then → change
x by -10.

CHOOSE AND INITIALIZE BOUNCING SPRITE - STEP 2
IN QUICK REFERENCE

Let students choose a sprite to be their bouncing sprite
(e.g., ball). Resize the sprite to something appropriate
in the sprite properties then add the following code:

when green flag clicked → go to x: 0 y:0 → point in
direction 30 [Step 2]

For the direction, 30 is our suggestion, but other angles
would work well too (except 0, 90, 180, -90).

MAKE THE SPRITE MOVE - STEP 3 IN QUICK
REFERENCE

Now it’s time to make our ball sprite move. To do this
add, a forever loop under the initialization code and
inside it put move 10 steps → if on edge, bounce
[Step 3].

Have students hit the green flag and test what happens.
At this point, their paddle should be able to move left
and right and their ball should be bouncing around
the screen. If the ball isn’t bouncing in a nice direction,
have them change the starting direction.

http://niiexplore.ca
https://scratch.mit.edu/projects/818524819
https://scratch.mit.edu/projects/762141005

View links and download digital materials at niiexplore.ca 7.32

MAKE A “BOUNCE” SUBPROGRAM - STEP 4 IN
QUICK REFERENCE

So far, the ball bounces when it hits the edge, but we
also want it to bounce when it hits our paddle. To do
this, let’s write a “bounce” subprogram.

Go to My Blocks and create a new block called bounce.
Under define bounce, we will add if touching paddle?
then → turn 180 degrees → move 15 steps → wait 0.02
seconds [Step 4a].

Now when the ball hits the paddle, it will turn around
and start heading back the way it came. Note that this
isn’t technically the same way that “if on edge, bounce”
works but this is simpler to code.

IMPORTANT: Remember to add the new bounce block
into the main program’s forever loop, right after “if on
edge, bounce” [Step 4b].

SCORING POINTS - STEP 5 IN QUICK REFERENCE

We can make this a true game by introducing a score
variable.

Go to variables and then “Make a Variable” called
Score. At the start of the program (under the “when
green flag clicked”) add set Score to 0 [Step 5a] then
add change Score by 1 into your “bounce” subprogram
under “if touching paddle” [Step 5b].

PLAY TESTING

Give the students a few minutes to test out their games
and offer assistance to anyone who needs it. At this
point, players should be able to score points every
time they hit the ball sprite with their paddle. Students
can also play around with the speed of the ball sprite
if they’d like (e.g. move 15 steps instead of move 10
steps).

ADD END GAME - STEP 6 IN QUICK REFERENCE

Now we will make the game end when the player
misses the ball. To do this, we have added a red “Line”
sprite along the bottom of the screen.

Inside the forever loop of the ball’s main program
(under the “bounce” command), add if touching Line
then → broadcast (game over) → hide [Step 6].

The “Game Over” sprite is pre-programmed to appear
and stop all scripts when it receives the “game over”
broadcast message.

NOTE: Students will also need to add a show command
at the start of their main program so that their ball will
re-appear at the start of the next game.

MORE PLAY TESTING

The students’ games should now be fully playable and
you can give them some time here to test them out.
Feel free to stop the lesson here if you are running low
on time, or you can proceed to the final steps: adding
more levels and changing the game speed.

OPTIONAL - ADD MORE LEVELS - STEP 7 IN
QUICK REFERENCE

If time allows, we can refine our game by adding more
levels. For each new level, we will change the backdrop
and increase the speed of both our ball sprite and
paddle sprite.

To add more levels, we will start by creating a new
subprogram to check the score. This function will test
if a certain target score is reached and change the level
accordingly.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.33

Go to My Blocks and “Make a Block” called check
score. Under define check score add if (score mod
5) = 0 then → broadcast (next level) [Step 7a]. Next,
add your new check score block into the bounce
subprogram right after “change score by 1” [Step 7b].

Show students how to add the code first, then take
some time to explain what “mod” does.

EXPLANATION: The operation “mod” (short for
modulo) tells us the remainder when we divide by a
certain number. For example, 7 mod 2 means “what
is the remainder when you divide 7 by 2?” In this
example, the answer is 1. In our code, we are taking
“score mod 5” – that is, we are dividing the score by 5
and checking what the remainder is. If the remainder
= 0, then our score must be a multiple of 5. If you want
the level to change every 8 points, for example, you
could make it mod 8 instead of mod 5.

ADD A SPEED VARIABLE - STEP 8 IN QUICK
REFERENCE

The final thing we will do is add a speed variable so that
the game gets faster each level.

First, create a new variable called “speed” and
make it hidden.

At the start of the program, add “set speed to 10”
[Step 8a]. This is a fairly slow starting speed, but they
could make it even slower if they’d like.

Inside your “check score” subprogram, add “change
speed by 2” into the conditional statement [Step 8b].
Now the speed variable will increase by 2 each level.

Finally, we need to use our speed variable within
our program. In the main program, replace “move 10
steps” with move (speed) steps [Step 8c] and in the
paddle code replace “change x by 10” with change x by
(speed) and replace “change x by -10” with change x
by -1* (speed) [Step 8d].

Note that you need to use a multiplication block to
make the speed negative for the left arrow key.

BONUS - CUSTOM LEVELS

Here are some suggestions if you still have time for
students to experiment.

Add more levels

We added 6 backdrops to start, but students are free to
add more. We created costumes for the “Levels” sprite
up to Level 10.

Tinker with speeds

Students can increase the speed by more or less each
level. They can start at a slower or faster speed.

Sound effects

It can quickly get annoying, but students may want to
add a sound effect when they level up or when they hit
the ball.

SLIDE 9 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they learned during the
program. Possible topics: repeat until vs repeat __
times, subprograms/functions, conditional statements.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.34

SLIDES 10 AND 11 - FINAL PROJECT PREVIEW

Use the slides to explain the final project.

“You will be applying everything we’ve talked about to
make your own game. You can keep going with one of
the ones we made together and make it even better, or
you can create something new.”

Remind students about the three games you made
together and where they can find their saved projects
in Scratch.

When students are done, they will share their work for
you to evaluate.

As a bonus, NII Explore is always accepting submissions
to our “Scratchathon” contest. Email your students’
projects to explore@nii.ca - we hand out prizes
periodically for some of our favourite games!

SLIDE 12 - POEM OF THE DAY

Share the final Poem of the Day.

SLIDE 13 - WHAT’S NEXT?

Complete the final project in the next couple weeks
while this lesson is still fresh. If you haven’t already, try
out the offline activities with your class. Happy coding!

http://niiexplore.ca
mailto:explore%40nii.ca?subject=

View links and download digital materials at niiexplore.ca 7.35

QUICK REFERENCE

Single-player Pong
Students will turn back the clock to make their own version of Pong. In
this single-player game, players will keep a bouncing ball up for as long
as possible. Students will write a “bounce” subprogram, build control
structures with loops and conditional statements, and apply some
important math concepts.

SET UP

• Have students log into their Scratch accounts and open student link

• Open both the student version and the finished game on your
computer. You will demo the finished version then work from the
student version.

THE CODE

Here is the final code for all sprites. Parts annotated in GREY will be
pre-populated for the students. Steps marked in PINK indicate code that
you will be adding and the numbers correspond with the suggested order
of steps from the from the lesson plan on Pages 7.31 to 7.34.

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/762298370

Finished Example
scratch.mit.edu/
projects/818524819

http://niiexplore.ca
https://scratch.mit.edu/projects/762738355
https://scratch.mit.edu/projects/762298370
https://scratch.mit.edu/projects/762298370
https://scratch.mit.edu/projects/818524819
https://scratch.mit.edu/projects/818524819

View links and download digital materials at niiexplore.ca 7.36

SPRITE 1 – BOUNCING SPRITE

Step 2b – Start the sprite in a
random direction.

Step 5a – Set the score to 0
when game starts.

Step 8a – Choose a starting speed.

Step 4b – Add the new bounce
subprogram into the main
program.

Step 6 – Trigger the end game
message and hide the ball if it
hits the line at the bottom of
the screen.

Step 3 – Makes the sprite move and then bounce when it
hits the edge (Note: It will say move “10” steps when you
first write this code).

Step 8c – Replace the 10 with “speed”. Now the ball will
speed up each level.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.37

Step 5b – Increase score
whenever ball hits the paddle.

Step 7b – Add the check
score subprogram such that
it checks immediately after
scoring a point.

Step 4a – Write this
subprogram to make
the ball bounce when it
hits the paddle. The two
blocks about the score
will be added later.

OPTIONAL

Step 7a – Check to see if the score is divisible
by 5 (or 10) and then change the speed and
level when it is.

Step 8b – Increase the speed variable each
time a new level is reached.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.38

Controls the motion of the paddle.

Step 1 – When you first add code here,
you will put in “10” for the right arrow and
“-10” for the left arrow.
Step 8d – Replace the 10 and -10 with
speed and -1*speed, respectively. This will
allow the paddle to move faster each level
to keep up with the faster ball.

SPRITE 3 – LINE

SPRITE 2 – PADDLE

Sets sprite location (bottom of
screen), prevents sprite from
being moved.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.39

SPRITE 4 – GAME OVER

SPRITE 5 – LEVELS

Initializes sprite position and
makes it hidden at the start of
the game.

Initializes the sprite’s position and
costume (Level 1) and can’t be
moved.

Game Over message appears when
the “game over” broadcast message is
received. Stops all scripts in the entire
project.

Switches costumes when the level
changes.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.40

OFFLINE ACTIVITY 3

Video game design
30–45 MINUTES

Students will prepare for their final coding project by creating a
Game Design Document.

LEARNING OBJECTIVES

• Create a plan for a coding project
• Communicate ideas through writing and concept art

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Language – Writing, Overall Expectation 1
• Arts D1 (Visual Arts)

SET-UP

Print the worksheets for the Game Design Document and Final Project on the
front and back of a single page. Students will use the front for this activity and
the back for their final projects.

INSTRUCTIONS

SUMMARY
Video game developers often create a Game Design Document (GDD) when
making a new game. The document serves as a guiding vision for all teams
working on the project. In this activity, students will complete a simple GDD. In
the final project, they will use their GDD as a guide to create their own game.

1. Explain the premise of the activity. SAY “We are going to make our own
games like we practiced in our coding classes. Today, you are going to create
something called a ‘Game Design Document’. The next time we have the
computers, you will be coding your game in Scratch.”

2. Ask students to recall what they learned in the online coding classes.
ASK “What kind of games did we make?” (Clicker game, Maze game, Pong
game) “What kind of games do you like to play?”

MATERIALS

Each student will need:

• 1 worksheet

• Something to write with

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.41

3. Hand out worksheets and go through each section
of the Game Design Document. The students
can either customize and improve one of the
games they made during the online classes
(recommended) or create a new game from scratch
(pun intended).

4. Give students time to fill in the document with their
ideas. You can use the guiding questions below
to answer questions about the document or help
students when they get stuck.

 Title
What is your game called? Does it sound like
something you’d want to play?

 Description
What is the game about? How would you explain it
to a friend?

 Characters
What characters (sprites) are in your game?
What do they look like? What do they do?

 Setting
Where does the game take place? What does
the backdrop look like? Does the backdrop ever
change?

 Gameplay
What is the goal of the game? Which sprite(s) does
the player control? How do they control it? How
many players are there? How do you score points?
How does the game end?

 Extras
What extra features will you add to your game?
Examples: sound effects, animations, different
levels, more characters, leaderboard, “You Win”
message

5. When students are finished their GDDs, collect the
worksheets. You will hand them back when you
have computer time for the final project.

http://niiexplore.ca

niiexplore.ca 7.42

Game Design Document
ACTIVITY 3 WORKSHEET

Use this sheet to help plan your own video game. You can use one of your
existing games as a starting point or you can make a different game.
Later, you will make your game in Scratch.

DESCRIPTION What’s the game about?

GAME TITLE

NAME

CHARACTERS Sketch and describe them here.

SETTING Where does the game happen? EXTRAS

GAMEPLAY Explain what happens in the game.
How does the player control their sprite?
Score points? Win the game?

http://niiexplore.ca

niiexplore.ca 7.43

Make your own game
FINAL PROJECT WORKSHEET

Now it’s time to turn your Game Design Document into your own game. You can make a customized version of
one of the games from the online classes (Clicker Game, Maze Game or Pong Game) or you can create something
new. As a coder, it’s often okay to get ideas from other people’s code as long as you give them credit and your final
game is your own work.

You can add as much detail as you want, but make sure your finished game includes:

 A player-controlled sprite At least 2 types of motion, including a change of x and y
coordinates

 A score variable A conditional statement (if-then or if-then-else)

 A subprogram (or “My Block”) An ending (e.g., “You Win” or “Game Over” message)

 A repeat loop with defined count

QUESTIONS
After you finish and submit your game, answer the reflection questions below.

1. Describe any new feature(s) you included in your game.

2. What subprogram (My Block) did you make? What does it do?

3. What is one problem you had while making your game? How did you try to fix it?

4. If you had more time, what would you add to your game?

http://niiexplore.ca

Download digital materials at niiexplore.ca 7.44

FINAL PROJECT

Make your own game
60 MINUTES +

Students will apply their coding knowledge to make their own custom game.
It’s a fun opportunity to demonstrate what they’ve learned. Classes can
submit their finished games to NII Explore at explore@nii.ca!

LEARNING OBJECTIVES

• Build, test, and improve a game in Scratch
• Write and edit code that includes the analysis of data
• Write a game description and instructions for other users

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Media Literacy 3.4

SET-UP

Before class, check out this video explanation of the project. Have students
log onto computers and open their Scratch accounts. Hand back the Game
Design Documents from Activity 3.

INSTRUCTIONS

SUMMARY
Your students will be using the Game Design Documents they completed
in Activity 3 to make their own game in Scratch. They can make a custom
version of one of the games you made together (recommended) or make their
own game.

1. Explain challenge to students. “You will be using the Game Design
Documents you made last time to create your games in Scratch.”

2. Review the final project instructions on the back of the student
worksheets (Final Project Worksheet). It outlines the goal of the project
and what elements should be included in their code.

MATERIALS

Each student will need:

• Laptop or tablet

• Scratch account

• Game Design Document
from Activity 3

http://niiexplore.ca
mailto:explore%40nii.ca?subject=
https://www.youtube.com/watch?v=L3D2-Omm508

View links and download digital materials at niiexplore.ca 7.45

3. Students can open their previous games by clicking on the file folder in
Scratch. If students want to view NII Explore’s version of the games on
their computers, they can search “NIIExplore2” on Scratch and access
our shared files. Remind students that it is okay to look at code from
another game, but they shouldn’t copy someone else’s game exactly.
They need to make it their own.

4. Give students lots of time to work on their games. Remind them to
rename their projects and save their work often. Scratch will save
their work automatically as long as they are logged into their account.
If they lose their work at any point, they can try CTRL+Z to undo the
most recent action, or go to “Edit” then “Restore”.

5. If students need more time, consider giving them another computer
period.

6. PROJECT SUBMISSION When students are finished, they will share
their projects with you. Be sure to save about 15 minutes for this
process. First, they will click the orange “Share” button. Next, have
them fill in the “Instructions” box that appears. Finally, they will
click “Copy Link” and send the link to you via email or your online
classroom (e.g., Brightspace or Google Classroom).

7. After submitting their Scratch projects, ask students to complete the
written questions on their worksheet and hand them in. You may use
the ASSESSMENT FRAMEWORK on the following pages to evaluate
your students’ work.

9. If you haven’t already, try the offline activities with your class. They
are meant as a fun way to reinforce coding ideas without needing
computers.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.46

FINAL PROJECT

Assessment and evaluation
When students have sent you their Scratch projects, you will be able to try their game by clicking
the green flag. Next, you can click “See Inside” to view their code. Check that the students used the
following elements in their game as outlined on their worksheets:

 A player-controlled sprite
As the game’s player, is there a sprite that you can control? How do you control the sprite?

 A score variable
Click on the “Variables” tab on the left. Do they have a score variable? Does it appear during
the game?

 A subprogram (or “My Block”)
Click on the “My Blocks” tab on the left. Have they created a pink My Block? What does it do?
Where does it appear in their main program?

 A repeat loop with defined count
Did they use a light orange repeat loop? Does it repeat for a specific number of times or until a
condition is met?

 At least 2 types of motion, including a change of x and y coordinates
Does a sprite undergo different types of transformation (e.g., rotation, reflection, translations,
growing/shrinking)? Does the student show an understanding of xy-coordinates on the
Cartesian plane?

 A conditional statement (if-then or if-else-then)
Has the student included a light orange conditional statement? What does it control?

An ending (e.g., “You Win” or “Game Over” message)
How does the game reach an end? What happens when the end is reached?

Students will probably use more elements than the ones listed above, but these are
the ones specified on their worksheets.

Read through both their code and their worksheet responses, then use the
ASSESSMENT FRAMEWORK on the next page to evaluate their work.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.47

Assessment framework
This chart will help you assess your students’ work during the Final Project and the Coding in
the Classroom program as a whole. It is based on the Ontario Mathematics (2020) curriculum.

KNOWLEDGE AND UNDERSTANDING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Knowledge of
content

Correctly uses few
required elements in
final code
Does not answer
questions during
online classes, even
with assistance

Correctly uses most
required elements in
final code
Answers questions
during online classes
with some assistance

Correctly uses all
required elements in
final code
Answers some
questions during
online classes

Correctly uses all
required elements and
some others in final
code
Answers many
questions during
online classes

Understanding
of content

Rarely uses
subprograms when
appropriate
Rarely uses defined
count when
appropriate

Sometimes uses
subprograms when
appropriate
Sometimes uses one
type of defined count
(FOR or UNTIL) when
appropriate

Often uses
subprograms when
appropriate
Often uses defined
count when
appropriate

Always uses
subprograms when
appropriate
Uses both types of
defined count (FOR
and UNTIL) when
appropriate

THINKING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Use of planning skills Creates Game Design
Document with few of
the required elements

Creates Game Design
Document with
some of the required
elements

Creates Game Design
Document with
most of the required
elements

Creates Game Design
Document with all of
the required elements

Use of processing
skills

Uses code to convert
Game Design
Document into
finished game with
limited effectiveness

Uses code to convert
Game Design
Document into
finished game with
some effectiveness

Uses code to
convert Game
Design Document
into finished game
with considerable
effectiveness

Uses code to
convert Game
Design Document
into finished game
with high degree of
effectiveness

Use of critical/
creative thinking
processes

Troubleshoots and
“debugs” code with
much assistance
Re-creates one of the
example games

Troubleshoots and
“debugs” code with
assistance
Creates new game by
modifying existing
features

Troubleshoots and
“debugs” code with
some assistance
Creates game with a
new feature

Troubleshoots and
“debugs” code with
little assistance
Creates game with
several new features

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.48

COMMUNICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Expression and
organization
of ideas and
information in
oral, visual, and/or
written forms

Uses some concept art
or written descriptions

Game Design
Document is not
clearly organized

Uses concept art or
written descriptions
to create somewhat
organized Game
Design Document

Uses concept art and
written descriptions to
create organized Game
Design Document

Uses concept art and
written descriptions to
create highly organized
Game Design
Document

Communication for
different audiences
and purposes in
oral, visual, and/or
written forms

Explains code and
gameplay, either orally
or in writing, with
limited effectiveness

Explains code and
gameplay, either orally
or in writing, with
some effectiveness

Explains code and
gameplay, either
orally or in writing,
with considerable
effectiveness

Explains code and
gameplay, either
orally or in writing,
with a high degree of
effectiveness

APPLICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Application of
knowledge and
skills in familiar
contexts

Follows coding lessons
with much assistance

Follows coding lessons
with assistance

Follows coding lessons
with some assistance

Follows coding lessons
with little or no
assistance

Application of
knowledge and
skills to new
contexts

Applies coding
knowledge to make
custom game with
much assistance

Applies coding
knowledge to make
custom game with
assistance

Applies coding
knowledge to make
custom game with
some assistance

Applies coding
knowledge to make
custom game with
little or no assistance

Making connections
within and between
various contexts

Rarely participates in
offline coding activities

Rarely makes
connections between
coding concepts and
everyday life

Participates somewhat
in offline coding
activities

Sometimes makes
connections between
coding concepts and
everyday life

Participates in offline
coding activities

Makes connections
between coding
concepts and everyday
life

Participates fully in
offline coding activities

Often makes
connections between
coding concepts and
everyday life

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 7.49

Additional
resources
SCRATCH

Scratch has a series of activity guides under the “Ideas” tab. There are also
countless tutorials available on YouTube.

scratch.mit.edu/ideas

CANADA LEARNING CODE

From lesson plans to professional development, this website has a wealth
of resources for teaching coding.

canadalearningcode.ca

BLOCKLY GAMES

These coding games cover a range of topics. Blockly offers a mix of
block-based and text-based coding. The later levels of some lessons are
quite tricky, but the first few levels should be accessible for Grade 7 students.

blockly.games

*Coding screenshots are sourced from scratch.mit.edu/

Scratch

Canada Learning Code

Blockly Games

http://niiexplore.ca
https://scratch.mit.edu/ideas
https://www.canadalearningcode.ca/
https://blockly.games/
http://scratch.mit.edu/

