
View links and download digital materials at niiexplore.ca 2.1

Coding with
concurrent events
Welcome to NII Explore’s Coding in the Classroom program for Grade 2
students. During the 4-week program, you and your class will complete:

• 3 online lessons
• 3 offline activities
• A final coding project

This teacher guide includes everything you need to get started!

THE GRADE 2 CODING CURRICULUM

As of 2020, Ontario’s math curriculum includes coding expectations. Put
simply, coding is when we make instructions, or “code”, for a computer to
follow. There are two core expectations that run through every grade level of
the coding curriculum.

1. Writing and executing code

2. Reading and altering existing code

Each grade level introduces students to a new coding skill. Students can
practice this new skill while also using the skills learned in previous grades. In
GRADE 2, students learn to code with both sequential and concurrent events.

Sequential events are instructions that happen in a specific order.
We use sequential events to solve coding problems and in our everyday lives.
Here’s an example of each:

GRADE 2 TEACHERS’ GUIDE

SCHEDULE AT A GLANCE

WEEK 1
• Online Lesson 1

Programming with
Angry Birds

• Offline Activity 1
Robot Teacher

WEEK 2
• Online Lesson 2

Debugging in Maze
• Offline Activity 2

Morning Sequences

WEEK 3
• Online Lesson 3

Making Sprites
• Offline Activity 3

Simultaneous Simon Says

WEEK 4
• Final Project

Sprites in Action

GRADE 2 GRADE 3GRADE 1

Concurrent Events Repeating EventsSequential Events

Wake Up Get
Dressed

Eat
BreakfastWake Up Get

Dressed
Eat

Breakfast

Sequential event examples.
The coding puzzle and solution
and the morning routine on
the left are both examples of
sequential events. They are a
series of steps or instructions that
happen in a certain order.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.2

In both coding and in everyday life, sometimes the
exact order of the steps matters…

… and sometimes there are multiple sequences
that work.

Sequencing is the foundation of all computer
programming which is why we’re starting here.

Concurrent events are things that happen at the same
time. As humans, we are often multi-tasking. Take
dance, for example. You need to listen to the music and
move different parts of your body all at the same time.

Dancing is an example of concurrent events. We might
move our feet at the same time that we move our arms.

With the correct code, computers can execute
concurrent events too:

Concurrent events. When this program runs, the sprite
will start wobbling then, without stopping the first
instruction, it will also start moving east.

Computers can only do exactly what we tell them to
do, and some events cannot happen concurrently. In
the example below, the animated character (or sprite)
doesn’t move. See if you can figure out what’s wrong
with the code!

Some events can’t happen concurrently. In this
example, we tell the sprite to start spinning right
without first telling it to stop spinning left. These two
events cancel each other out and the sprite doesn’t
move.

Concurrent events are an important part of our daily
lives. Can you imagine if you couldn’t sleep and breathe
at the same time? That would be quite inconvenient!
Concurrent events are also an essential coding skill,
especially for making things like animations and
games.

Put on shoes

Put on socksPut on shoes

Put on socks

OR

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.3

PROGRAM SCHEDULE
The Coding in the Classroom program will last four weeks. Here is a detailed
guide of what you will be doing each week.

BEFORE WEEK 1

Read through this teacher guide, including the instructions for the three online
lessons. If you have time, you may want to try the online activities for yourself.

Make sure your class has access to devices (laptops or tablets) for each of the
online lessons. Your class will also need devices for the final project.

WEEK 1

Online Lesson 1 – Programming with Angry Birds

This lesson introduces students to block-based coding and sequential events.
Students will write code to guide an Angry Bird through a series of mazes.

PREP Log students onto computers and open activity link.

POST Complete “Offline Activity 1 – Robot Teacher” before next online session.

See Page 2.5 for lesson instructions.

Offline Activity 1 – Robot Teacher

Students will have to guide their “robot teacher” through a series of seemingly
simple tasks.

See Page 2.9 for activity instructions.

WEEK 2

Online Lesson 2 – Debugging in Maze & Collecting Treasure with Laurel

The first activity introduces students to debugging – the process of finding
and fixing mistakes in computer code. If time allows, try the second activity for
extra coding practice.

PREP Same as Week 1.

POST Complete “Offline Activity 2 – Morning Sequences” before next online
session.

See Page 2.11 for lesson instructions.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.4

Offline Activity 2 – Morning Sequences

Students will make an ordered sequence for their morning routines.

See Page 2.14 for activity instructions.

WEEK 3

Online Lesson 3 – Making Sprites

Students will learn how to create, customize, and animate characters
called sprites.

PREP Same as Week 1.

POST Complete “Offline Activity 3 – Simultaneous Simon Says” and the
Final Project.

See Page 2.16 for lesson instructions.

Offline Activity 3 – Simultaneous Simon Says

Practice concurrent events with this fun twist on an old classic.

See Page 2.19 for activity instructions.

WEEK 4

Final Project – Sprites in Action

Students will build on what they learned in Week 3 to complete another sprite
lesson and make their own animation.

See Page 2.21 for project instructions and Page 2.23 for assessment criteria.

AFTER WEEK 4
If you haven’t already done so, try the rest of the offline activities then keep
the coding going with the additional resources on Page 2.25!

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.5

ONLINE LESSON 1

Programming with
Angry Birds
60 MINUTES

The three online lessons and final project all use code.org and block-based
coding. If you are new to code.org, you can check out their teacher resources
and try the lessons for yourself before each class.

This lesson will introduce students to the basics of block-based coding.
Students will practice sequencing to help an Angry Bird find its target. The
levels include a mix of writing code and editing existing code.

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations of
mathematical situations by writing and executing code, including code
that involves sequential and concurrent events

• Math C3.2 – read and alter existing code, including code that involves
sequential and concurrent events, and describe how changes to the code
affect the outcomes

PATTERNS AND RELATIONSHIPS

• Math C1.2 – create and translate patterns using various representations,
including shapes and numbers

GEOMETRIC AND SPATIAL REASONING

• Math E1.5 – describe the relative positions of several objects and the
movements needed to get from one object to another

QUICK LINKS

Student Activity Link
studio.code.org/s/
coursec-2022/lessons/3/
levels/1

PowerPoint
Grade 2 – Week 1 –
Intro to Coding

http://niiexplore.ca
https://studio.code.org/courses?view=teacher
https://studio.code.org/s/coursec-2022/lessons/3/levels/1
https://studio.code.org/s/coursec-2022/lessons/3/levels/1
https://studio.code.org/s/coursec-2022/lessons/3/levels/1
https://studio.code.org/s/coursec-2022/lessons/3/levels/1

View links and download digital materials at niiexplore.ca 2.6

LESSON BREAKDOWN

SLIDE 1 - SET UP AND INTRODUCTION

Open the PowerPoint slides and the code.org activity
on your own computer. Project for the students to see.

Get the students logged onto their computers with the
activity link open. They may get a pop-up message
that says: “You are not signed in”. They can dismiss this
message by clicking anywhere else on the screen. When
everyone is ready, have them turn their attention to you
for a quick discussion before the coding begins.

SLIDE 2 - WHAT IS CODING?

Check if your students have coding experience.
Ask them what coding means.

Use slides to explain what coding is. Answer: “Coding
is when we give instructions to a computer.”

SLIDE 3 - WHAT CAN YOU DO WITH CODE?

Ask students what they think – why are we learning to
code? What can we use it for?

Use slides to share possible answers.

SLIDE 4 - THE CODER’S CODE

Have students recite the “Coder’s Code” by repeating
after you.

The Coder's Code will help set expectations for
the students.

LEVEL 1

Switch your screen over to code.org.

Watch the introductory video together (Level 1 of the
lesson).

LEVEL 2

Proceed to Level 2. Give students a tour of the code.org
layout – where do we find everything?

Levels are listed in the bar along top, preview window
is on the left, blocks are in the middle, workspace is
on the right, instructions are above the blocks and
workspace. You should take some time to familiarize
yourself with the layout before you teach these lessons.

NOTE: For the most part, your students won’t need to
read the instructions, but some may need help reading
the words on the coding blocks (e.g., move forward).

LEVEL 2 - CONTINUED

Do Level 2 as a class. Explain the goal of the level and
read the instructions together. Help students read the
instructions on the blocks as needed.

Demo how to connect blocks and run the program.

NOTE: You will probably want students to turn down
their computer volume or mute their speakers entirely.
You can also make your preview window larger (i.e.,
the area where the Angry Bird appears) by dragging the
right side of the window.

LEVEL 3

Read the instructions together. Show students how to
add extra blocks from the “Blocks” section.

Give students a chance to try it and then take up the
solution together.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.7

LEVEL 4

Explain that the grey blocks can’t be deleted. Show that
we are using “6/5 blocks”. Ask “How many blocks do we
need to take away?”

Give students time to “debug” (fix) their code by
finding the block they need to remove. If needed, show
students how to remove blocks by dragging.

LEVEL 5

Practice left versus right. E.g., “Everyone turn your
head to the left. Now turn to the right.” If you have any
tricks to help students remember, now is a good time to
introduce them.

Encourage students to try the level on their own. If their
Angry Bird turns the wrong way, they can try changing
left to right or vice versa. Point out that the answer
should have 6 blocks.

Take up the level as a class.

LEVELS 6 & 7

If students are getting the hang of it, let them work at
their own pace through these next two levels. Remind
students to check the target number of blocks for each
level as a hint.

NOTE: You can monitor students’ progress by checking
the bar at the top of their screen. A solid green dot
shows that they fully completed a level. A partially filled
dot means that they solved the level but didn’t use the
intended method. For example, they may have used
more than the recommended number of blocks.

LEVEL 8

Show students how to use the Step button to read
through their code one line at a time. Remind students
that grey blocks can’t be deleted, only rearranged. If
students have trouble, do the level together using the
step button.

LEVEL 9

Let students try Level 9 on their own.

LEVEL 10

Explain that Level 10 is a prediction question. Read
through the code together one line at a time. Have
students visualize what is happening to the Angry Bird
at each step then read all the answer choices together.
Have the class vote on the answer.

LEVEL 11

Let students try Level 11 on their own. If there is extra
time, you could show them what the repeat block does.
If you’re unsure about it, test it for yourself first.

NOTE: The concept of repeating events isn't formally
introduced until Grade 3.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.8

SLIDE 6 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students "What did we learn about today? What
does coding mean?" (Giving instructions to computers).

Making programs

A program is a bunch of code that does something.
When we code, we are writing programs.

Fixing mistakes

Sometimes our Angry Bird crashed into the wall
because our code had mistakes. A big part of coding
is finding those mistakes and fixing them (also called
debugging).

Turning left and right

Not every puzzle is straightforward, sometimes
we have to turn!

See slides for other talking points.

SLIDE 7 - POEM OF THE DAY

Each slideshow ends with a Poem of the Day to recap
the lesson. Introduce the concept of the Poem of the
Day then read the poem together.

SLIDE 8 - WHAT’S NEXT?

Let students know when you will be coding again. We
recommend alternating between the online lessons
and the offline activities. It requires less screen time for
your class and will give students more time to absorb
the new information.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.9

OFFLINE ACTIVITY 1

Robot teacher
20 MINUTES

Students will practice giving step-by-step instructions to their “robot” teacher.

LEARNING OBJECTIVES

• Practice giving sequential instructions
• Use speaking skills to clearly communicate information

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Oral Communication 2.3 & 2.4

SET-UP

Read through this lesson plan and optionally collect the materials suggested in
Step 5 of the instructions.

INSTRUCTIONS

SUMMARY
As a class, students will tell you (or another adult) how to perform a task
like drawing a picture. The trick is that, like a robot, you will follow their
instructions literally. The goal is for students to practice giving very specific
instructions.

1. Ask students to recall what they learned about in the online class.
ASK What is coding? (Giving instructions to a computer)

2. Explain the premise of today’s activity. “Today, we are going to do some
coding, but instead of writing instructions for a computer, you will be
giving me instructions. I will pretend to be a robot and follow your
instructions exactly.”

3. Grab a marker or chalk and an eraser then head to the board. Tell students
that you’d like to draw a stick figure (or something of your choosing), but
as a robot, you don’t know what it’s supposed to look like.

MATERIALS

None required

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.10

4. Pick some volunteers to tell you how to draw your
picture one step at a time. Here’s the trick that
makes this game fun: intentionally make mistakes
whenever the instructions aren’t specific enough.

For example, if a student tells you to “draw a
circle,” make your circle really big (or really small)
or draw it in the wrong position on the board. If
the students want you to re-draw something, they
will need to tell you to erase the old part first. The
point is to encourage the students to make their
instructions as detailed as possible.

5. Try the activity again with a different picture.

 Variation

 Instead of drawing pictures, you could have
students give you instructions for making or
building something. For example, you could bring
in the ingredients for a sandwich and ask the
students for step-by-step help making it. Or you
could bring in a toy that needs assembly and ask for
assistance.

6. Wrap up the activity using some of the discussion
questions as a guide.

DISCUSSION QUESTIONS

What was the problem when we first started this
activity?

Possible answer: Our “robot” wasn’t doing what we
thought it would do.

Why do you think it’s so important to give specific
instructions to computers?

Answer: Computers are powerful but not very smart.
They can only do exactly what we tell them to do.

What’s it called when we give instructions to a
computer?

Answer: Coding!

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.11

ONLINE LESSON 2

Debugging in maze &
Collecting treasure
with Laurel
60 MINUTES

Students will continue coding with sequential events as they practice
debugging code. The debugging process connects to the curriculum
expectation of reading and altering existing code. If time allows, your class
can try the second activity to reinforce what they’ve learned so far.

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations of
mathematical situations by writing and executing code, including code
that involves sequential and concurrent events

• Math C3.2 – read and alter existing code, including code that involves
sequential and concurrent events, and describe how changes to the code
affect the outcomes

PATTERNS AND RELATIONSHIPS

• Math C1.2 - create and translate patterns using various representations,
including shapes and numbers

GEOMETRIC AND SPATIAL REASONING

• Math E1.5 - describe the relative positions of several objects and the
movements needed to get from one object to another

QUICK LINKS

Debugging in Maze
studio.code.org/s/
coursec-2022/lessons/4/
levels/1

Collecting Treasure
with Laurel
studio.code.org/s/
coursec-2022/lessons/5/
levels/2

PowerPoint
Grade 2 – Week 2
– Debugging

http://niiexplore.ca
https://studio.code.org/s/coursec-2022/lessons/4/levels/1
https://studio.code.org/s/coursec-2022/lessons/4/levels/1
https://studio.code.org/s/coursec-2022/lessons/4/levels/1
https://studio.code.org/s/coursec-2022/lessons/5/levels/2
https://studio.code.org/s/coursec-2022/lessons/5/levels/2
https://studio.code.org/s/coursec-2022/lessons/5/levels/2

View links and download digital materials at niiexplore.ca 2.12

LESSON BREAKDOWN

SET UP

Open the PowerPoint slides and the code.org activities
on your own computer. Project for the students to see.

NOTE: There are two activities this week because each
one is somewhat shorter.

Get the students logged onto their computers with the
first activity link open (Debugging in Maze).

SLIDE 1 - WEEK 1 RECAP

Ask the students to recall what they learned in the first
online lesson (e.g., how to connect blocks, how to run a
program).

SLIDES 2 & 3 - READY TO START, CODER’S CODE

OPTIONAL: Choose a point from the Coder's Code
to emphasize this week. The slide is hidden in the
PowerPoint file if you want to use it.

Switch your screen to code.org. Make sure students
have the right lesson open. Start with Debugging in
Maze.

DEBUGGING IN MAZE - LEVEL 1

Watch the introductory video together (Level 1 of the
lesson). The video explains what debugging is.

LEVEL 2

Explain that you will be debugging today which is what
we call it when we fix mistakes in code. For each level,
there will be some mistake that we need to fix. Ask if
students can figure out what is wrong in this level.

LEVELS 3 & 4

Explain that there are different things could be wrong.
Sometimes the code is missing a step and sometimes
there are extra steps. Let students try the next two
levels on their own.

LEVEL 5

Remind students about left and right. Encourage them
to use the step button to help spot the mistake in their
code. The step button allows us to execute the code
one block at a time and makes it easier to spot our
mistakes.

LEVEL 6

Remind students that grey blocks cannot be deleted,
only rearranged.

LEVEL 7

Point out the target number of blocks. Ask “How many
do we need to remove?” Encourage them to use the
step button again.

LEVEL 8

Let students try this challenge level on their own then
take up the answer as a class.

LEVEL 9

Level 9 is a prediction question. Read through the code
together one line at a time. Have the students visualize
what is happening to Scrat each step then read all the
answer choices together. Ask the class to vote on the
answer.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.13

LEVEL 10

Have students try this level on their own.

SLIDES 4 TO 10 - INTERMISSION: HISTORY MINUTE

When you are roughly halfway through the period, take
a break to share the history minute about Grace Hopper
and the origin of “debugging.” You will need to switch
back to the PowerPoint slides. There are speaking
points in the slide notes.

It’s a good opportunity to check how students are doing
and re-focus their attention.

COLLECTING TREASURE WITH LAUREL - LEVEL 2

After students finish Level 10 of “Debugging in Maze,”
they will be taken to this new lesson automatically.
Alternatively, you can have them open the second
activity link.

Level 1 is an introductory video that students can skip.

In Level 2, show them how to make Laurel move
forward and collect a piece of treasure. Note that this is
a demo level – they only need to collect a single gem to
pass the level.

LEVELS 3 ONWARDS

Give students the rest of the time to work through these
levels at their own pace. Let them know it’s okay if they
don’t finish them all. We have included this second
lesson because the Debugging lesson tends to finish
early.

SLIDE 11 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students "What did we learn about today?
(Debugging) What does debugging mean? (Fixing
mistakes in our code) What are some tricks we can
use to help us debug?" (step button, “rubber duck”
debugging).

SLIDE 12 - POEM OF THE DAY

Share this week’s Poem of the Day.

SLIDE 13 - WHAT’S NEXT?

Give a quick preview of the next lesson. "We will
learn how to make characters called sprites and then
animate them."

You can also try Offline Activity 2 – Morning
Sequences before the next online lesson.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.14

OFFLINE ACTIVITY 2

Morning sequences
30 MINUTES

Students will create an ordered sequence for their morning routine then
try to sort each other’s steps.

LEARNING OBJECTIVES

• Understand sequencing of steps
• Communicate ideas through pictures and writing

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Arts D1
• Writing 1.5 & 1.6

SET-UP

Gather the required materials. You may choose to pre-cut the paper
into quarters.

INSTRUCTIONS

SUMMARY
Students will write and illustrate an ordered sequence of events to represent
their morning routine. They will then trade with a partner and try to put each
other’s sequences in the right order.

1. Ask students to recall what they learned about in the online class.
ASK What’s it called when we fix mistakes in our code? (Debugging) What
were some mistakes we had to debug? (Missing or extra steps, steps in the
wrong order)

2. Explain the premise of today’s activity. SAY “Just like in coding, we often
do steps in a certain order. Today, you are going to draw a routine (or
program) to show us what you do in the morning.”

3. Hand out paper and have students divide their page into quarters.
You may choose to pre-cut their pages into quarters if you have
a paper slicer.

MATERIALS

Each student will need:

• A piece of blank paper

• Something to write
and draw with

• Scissors

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.15

4. Students will now pick four different things they
do in the morning. For example, “brush teeth, get
dressed, ride bus, watch TV.” They will draw
and label these activities in the four quarters of
their page.

5. When students are finished, they will cut their page
into quarters. Students should now have four cards,
each with a different activity on it.

6. Ask students to put their four cards in the correct
order based on their own morning routine. To use
the example above, the sequence might be
“watch TV → brush teeth → get dressed → ride
bus.” After you’ve checked their order, flip over
their cards and write the numbers 1 to 4 on the
backs (i.e., Card 1 has a 1 on the back, Card 2 has a
2, etc.). These numbers will serve as an answer key.

7. Have students mix up the order of their four cards
and then trade with a partner. Alternatively, you
could collect each student’s set and facilitate the
exchanges yourself.

8. Students will now try to find the correct sequence
for their classmate’s cards. They can check their
answer by flipping over the cards to see the
numbers on the back.

9. You may choose to repeat Steps 7 and 8 for several
rounds. When done, debrief the activity using the
following discussion questions as a guide.

DISCUSSION QUESTIONS

Did anyone have a different order than you expected?
Why do you think that is?

Possible answer: There are many correct sequences for
our morning routines.

In coding, what’s it called when you make a mistake
with the order of your steps? What’s it called when we
fix it?

Answers: a bug, debugging.

Can you think of any morning tasks that have to be
done in the right order? What about ones where the
order doesn’t matter?

Possible answers: You have to wake up before you can
get dressed, but you can brush your teeth before or after
you get dressed.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.16

ONLINE LESSON 3

Making sprites
60 MINUTES

Students will learn how to create, customize and animate sprites. There
are not many code.org lessons that deal with concurrent events, but the
“behavior” blocks in this lesson allow sprites to perform multiple actions at
the same time. The blocks in this lesson involve a fair amount of reading, so be
prepared to help students in that regard.

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations of
mathematical situations by writing and executing code, including code
that involves sequential and concurrent events

• Math C3.2 – read and alter existing code, including code that involves
sequential and concurrent events, and describe how changes to the code
affect the outcomes

GEOMETRIC AND SPATIAL REASONING

• Math E1.5 - describe the relative positions of several objects and the
movements needed to get from one object to another

QUICK LINKS

Student Activity Link
studio.code.org/s/
coursef-2022/lessons/3/
levels/2

PowerPoint
Grade 2 – Week 3 –
Animation & Final
Project

http://niiexplore.ca
https://studio.code.org/s/coursef-2022/lessons/3/levels/2
https://studio.code.org/s/coursef-2022/lessons/3/levels/2
https://studio.code.org/s/coursef-2022/lessons/3/levels/2

View links and download digital materials at niiexplore.ca 2.17

LESSON BREAKDOWN

SET UP

Open the PowerPoint slides and the code.org activity
on your own computer. Project for the students to see.

Get the students logged onto their computers with the
activity link open.

SLIDE 1 - WEEK 2 RECAP

Ask students to recall what they learned about in Week
2 (e.g., debugging, sequencing).

SLIDES 2 TO 7 - HISTORY MINUTE: PIXAR

Take a moment to share this history minute about Pixar
and computer animation. See slide notes for talking
points.

SLIDES 8 & 9 - READY TO START

Make sure students have the right lesson open.

The Coder’s Code is hidden in the slides if you want to
refer to it, otherwise feel free to go right into the lesson.

LEVEL 2

Watch the introductory video (Level 2). We recommend
skipping Level 1 because it jumps ahead to a more
advanced topic without first providing context.

LEVEL 3

IMPORTANT NOTE: Code.org uses cookies to
remember your progress if you tried this lesson
beforehand. After opening the activity link, you will
have to click “Version History” and then “Start Over”,
otherwise your previous answers will be visible. You will
have to do this on every level.

Give students a tour of the coding area and point out
what’s different. The biggest change is that the “Blocks”
section now has a menu of options to choose from.

As a group, demonstrate how to add a new sprite.
Let students use the dropdown menu to change the
appearance of their sprite. Ask for some volunteers to
share which sprite they chose.

LEVEL 4

Point out the new “Location” tab and then demonstrate
how to change the location of the sprite. If students
are readers, they can try reading the instructions for
themselves.

LEVEL 5

Explain the goal to the students. “We will be making
four different sprites and putting one in each corner.”
Click the example image to show students what you
mean.

Remind students where to find the blocks they will
need. Some students will understand right away, others
will need some hands-on support.

If some students finish faster, show them that they can
also customize their background.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.18

LEVEL 6

Show students the new “set size” block and where it is
found. Explain the challenge to them then give them
time to try it. Have students experiment with different
sizes. How big can their sprite get? How small?

LEVEL 7

Show students where to find the new “behaviors”
blocks and explain what they do. Let students
experiment with different behaviors. If they finish
before others are ready, challenge them to make their
sprite do multiple behaviors at once (i.e., concurrent
events).

LEVEL 8

Level 8 contains four separate challenges. Briefly
explain the goal of each one, before asking the students
to start on A.

Once in Level A, click on the image in the instructions
section to show students what their end goal looks like.
Remind them to check the image if they are ever unsure
of what they’re supposed to be making.

Give students time to work through the four levels on
their own, offering instructions and support as needed.

OPTIONAL - LEVEL 9

If time allows, have students skip ahead to Level 9. This
is a free-play level where students can make their own
animation using sprites. Invite students to share what
they make with you.

SLIDE 10 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students "What have we learned about coding so
far?"

Programs

We make programs by putting instructions in a certain
order. We might also call this an algorithm.

Debugging

Debugging is when we fix mistakes in our code.

Sprites

Sprites are characters/images we can control with
code. We can set their size and location, and even make
them perform multiple behaviors at once!

SLIDE 11 - PREVIEW THE FINAL PROJECT

Students will try one more code.org lesson, mostly on
their own.

Explain that they will be doing more work with sprites
and learning about new things that sprites can do.

SLIDE 12 - POEM OF THE DAY

Share the final Poem of the Day.

SLIDE 13 - WHAT’S NEXT?

Complete the final project in the next couple weeks
while this lesson is still fresh. If you haven’t already, try
out the offline activities with your class. Happy coding!

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.19

OFFLINE ACTIVITY 3

Simultaneous
Simon Says
20 MINUTES

Practice following concurrent events with a new twist on a classic game.

LEARNING OBJECTIVES

• Understand concurrent events
• Perform movement skills

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Health and Physical Education C1 & C2

SET-UP

This activity requires some space. Consider moving to the gym or
re-arranging the classroom.

INSTRUCTIONS

SUMMARY
In a normal game of Simon Says, students only perform one motion at a time.
In this version, students will have to follow multiple instructions at once.

1. Ask students to recall what they learned about in the online class.
ASK What are sprites? (Characters we can control with code) What
“behaviours” did we have our sprites perform? (spinning, growing,
moving, etc.)

2. Explain the premise of today’s activity. “In our last coding class, you told
sprites what to do. Today, you’re going to be my sprites. I’m going to tell
you what to do in a special game of Simon Says."

MATERIALS

None required

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.20

3. Have students stand up and spread out. Play a
round of the basic version of Simon Says as a warm
up, especially if your class is unfamiliar with the
game. For example, if you say “Simon says spin
around” students should spin around, but if you
just say “spin around” they shouldn’t spin because
you didn’t say “Simon says”.

4. Next, explain the new twist. In coding, if we tell a
sprite to spin, it will keep spinning until we tell it
to stop. For example, if you say “Simon says spin”
followed by “Simon says clap your hands” the
students should start spinning then keep spinning
as they clap their hands. They will only stop
spinning when you say “Simon says stop spinning.”
Demonstrate using this example.

5. Begin a new game, starting very slowly at first. Here
is an example sequence:

 • Simon says walk on the spot

 • Simon says stop walking

 • Simon says put your hands on your head

 • Simon says spin around – Students should spin
 around with their hands still on their head

 • Simon says stop spinning – Hands should still
 be on their head

 • Simon says take your hands off your head
 – Students should be back to neutral

6. Continue playing the game, gradually adding more
simultaneous actions as your class gets the hang of
it. See if they can get up to doing three or even four
actions at the same time.

7. Debrief the activity using the following discussion
questions as a guide.

DISCUSSION QUESTIONS

Did you find it hard to do two things at once? What
made it harder?

In this activity, I had to tell you when to stop doing
something. How come computers need us to tell them
when to stop?

Answer: Computers can’t “think” like we can. We need to
tell them exactly what to do.

Can you think of a time in your life when you might
have to do two things at once?

Possible answers: Hand signal while riding bike, sing
“Happy Birthday” while washing hands, listening while
taking notes.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.21

FINAL PROJECT

Sprites in action
60 MINUTES

Students will apply their coding knowledge to complete a Code.org lesson on
their own or with a partner. At the end of the lesson, students will have
“free play” time to make their own short animation.

LEARNING OBJECTIVES

• Write and execute code, including code with concurrent events
• Read and alter existing code

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)

SET-UP

Open the activity link and try the lesson for yourself. It should take you 15-20
minutes to complete. Afterwards, you will have to click “Version History”
and then “Start Over” on each level, otherwise your previous answers will be
visible when you show the students.

INSTRUCTIONS

SUMMARY
You and your students will be completing a Code.org lesson titled “Sprites in
Action” together. In each level, students will use coding blocks to make sprites
perform different behaviours. At the end, there is a “free play” level where
students can make whatever they’d like.

1. Ask students to recall what they learned about in the last online class.
ASK What are the characters called that we move around? (Sprites) What
can we control about our sprites? (Size, position, behaviours)

2. Start by trying the prediction question in Level 1.
Read the question and code out loud for the students.

QUICK LINKS

Student Activity Link
studio.code.org/s/
coursef-2022/lessons/4/
levels/1

http://niiexplore.ca
https://studio.code.org/s/coursef-2022/lessons/4/levels/1
https://studio.code.org/s/coursef-2022/lessons/4/levels/1
https://studio.code.org/s/coursef-2022/lessons/4/levels/1

View links and download digital materials at niiexplore.ca 2.22

3. Next, watch the lesson’s introductory video as a
class (Level 2). The video explains what you will be
doing in the lesson.

4. Begin working through each level while reading all
the instructions together, or you can let students try
it for themselves.

5. Levels 6 and 7 are about stopping behaviours. If
you’ve already done Offline Activity 3, you can use it
to help explain this concept.

6. Level 8 has six different challenges to try. If you
have time, let students pick a challenge to try on
their own. Otherwise, skip ahead to Level 9.

7. Level 9 is a “free play” level. Give students time
to play around with the different coding blocks to
make whatever they’d like. Try to save at least 15
minutes at the end for this.

8. Walk around the class to help students and ask
them to show you what they made.

9. After the class, review the ASSESSMENT
FRAMEWORK on Page 2.23. It is meant as a tool to
help you evaluate each student’s work during this
final project and their progress through the Coding
in the Classroom program as a whole.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.23

Assessment framework
This chart will help you assess your students’ work during the Final Project and the Coding in the Classroom
program as a whole. It is based on the Ontario Mathematics (2020) curriculum.

KNOWLEDGE AND UNDERSTANDING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Knowledge of
content

Uses few block types (set
size, behaviours, etc.) in
final project
Does not answer
questions during online
classes, even with
assistance

Uses some block types
(set size, behaviours,
etc.) in final project
Answers questions
during online classes
with some assistance

Uses most block types
(set size, behaviours,
etc.) in final project
Answers some questions
during online classes

Uses many block
types (set size,
behaviours, etc.) in
final project
Answers many
questions during
online classes

Understanding
of content

Rarely uses correct
sequencing to solve
coding puzzles
Rarely uses concurrent
events (e.g., performs
two behaviours at once)
when appropriate

Sometimes uses correct
sequencing to solve
coding puzzles
Sometimes uses
concurrent events
(e.g., performs two
behaviours at once)
when appropriate

Often uses correct
sequencing to solve
coding puzzles
Often uses concurrent
events (e.g., performs
two behaviours at once)
when appropriate

Always uses correct
sequencing to solve
coding puzzles
Always uses
concurrent events
(e.g., performs two
behaviours at once)
when appropriate

THINKING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Use of planning
skills

Rarely predicts which
coding blocks are
needed to solve a puzzle
or make an animation

Sometimes predicts
which coding blocks are
needed to solve a puzzle
or make an animation

Often predicts which
coding blocks are
needed to solve a puzzle
or make an animation

Usually predicts
which coding blocks
are needed to solve
a puzzle or make an
animation

Use of
processing skills

Converts ideas into
code with limited
effectiveness

Converts ideas into code
with some effectiveness

Converts ideas into
code with considerable
effectiveness

Converts ideas
into code with
high degree of
effectiveness

Use of critical/
creative
thinking
processes

Troubleshoots and
“debugs” code with
much assistance
Does not experiment
with new ideas in final
project

Troubleshoots and
“debugs” code with
assistance
Experiments with a new
idea in final project

Troubleshoots and
“debugs” code with
some assistance
Experiments with a few
new ideas in final project

Troubleshoots and
“debugs” code with
little assistance
Experiments with
many new ideas in
final project

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.24

COMMUNICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Expression and
organization
of ideas and
information in
oral, visual, and/
or written forms

Rarely organizes code
clearly or uses correct
terminology

Organizes codes
somewhat clearly and
sometimes uses correct
terminology

Organizes code clearly
and mostly uses correct
terminology

Always organizes
code clearly and
uses correct
terminology

Communication
for different
audiences and
purposes in oral,
visual, and/or
written forms

Explains code and
animation, either orally
or in writing, with limited
effectiveness

Explains code and
animation, either orally
or in writing, with some
effectiveness

Explains code and
animation, either
orally or in writing,
with considerable
effectiveness

Explains code and
animation, either
orally or in writing,
with a high degree
of effectiveness

APPLICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Application of
knowledge and
skills in familiar
contexts

Completes coding levels
with much assistance

Completes coding levels
with assistance

Completes coding levels
with some assistance

Completes coding
levels with little or
no assistance

Application of
knowledge and
skills to new
contexts

Applies coding
knowledge to complete
final project with much
assistance

Applies coding
knowledge to complete
final project with
assistance

Applies coding
knowledge to complete
final project with some
assistance

Applies coding
knowledge to
complete final
project with little or
no assistance

Making
connections
within and
between various
contexts

Rarely participates in
offline coding activities

Rarely makes
connections between
coding concepts and
everyday life

Participates somewhat in
offline coding activities

Sometimes makes
connections between
coding concepts and
everyday life

Participates in offline
coding activities

Makes connections
between coding
concepts and everyday
life

Participates fully
in offline coding
activities

Often makes
connections
between coding
concepts and
everyday life

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 2.25

Additional
resources
CODE.ORG

Code.org is the same platform we used for the online lessons. For Grade 2
students, we recommend any of the lessons from Courses A, B or C.

code.org/educate/curriculum/

SCRATCHJR

Scratch Jr. is a free app version of the popular Scratch coding platform. It is
meant for younger learners and pre-readers, and it’s available on tablets and
mobile devices. There are many built-in lessons that teach students to solve
problems and create their own animations.

scratchjr.org

KODABLE

Kodable offers a range of simple, unplugged coding activities to try
with your class.

kodable.com/learn/unplugged-coding-activities

CANADA LEARNING CODE

From lesson plans to professional development, this website has a wealth
of resources for teaching coding.

canadalearningcode.ca

TVO CODING IN THE CLASSROOM

Watch webinars and read suggestions for teaching Ontario’s coding curriculum.

outreach.tvolearn.com/codingintheclassroom

*Coding screenshots are sourced from code.org

Scratch Jr.

Code.org

Kodable

http://niiexplore.ca
https://code.org/student/elementary
https://www.scratchjr.org/
https://www.kodable.com/learn/unplugged-coding-activities
https://www.canadalearningcode.ca/
https://outreach.tvolearn.com/codingintheclassroom/
http://code.org

	Online Lesson 2 - Debugging in Maze & Collecting Treasure with Laurel

