
View links and download digital materials at niiexplore.ca 8.1

Analysis of data
Welcome to NII Explore’s Coding in the Classroom program for Grade 8
students. During the 4-week program, you and your class will complete:

• 3 online lessons
• 3 classroom activities
• A final coding project

This teacher guide includes everything you need to get started!

THE GRADE 8 CODING CURRICULUM

As of 2020, Ontario’s math curriculum includes coding expectations. Put
simply, coding is when we write instructions, or “code”, for a computer to
follow. There are two core expectations that run through every grade level
of the coding curriculum.

1. Writing and executing code

2. Reading and altering existing code

Each grade level introduces students to a new coding skill. Students
can practice this new skill while also using the skills learned in previous
grades. In Grades 5 to 7, students learn to use conditional statements,
loops, and subprograms.

In GRADE 8, students begin using code for the analysis of data. Coding is
often used to analyze data because computers can store and manipulate
large amounts of information easily.

We are living in the Information Age with many careers in coding and
data science. Even if students don’t work with data directly, a basic
understanding of coding and data analysis will help them navigate an
increasingly data-driven world.

Data comes in many forms, but we will focus on three types: numbers,
strings, and Boolean data. Numbers are what we usually think of when
we hear “data”. Numerical data can be stored as integers (i.e., positive or
negative whole numbers) or as decimals (called floats or doubles).

GRADE 8 TEACHERS’ GUIDE

SCHEDULE AT A GLANCE

GRADE 7 GRADE 8GRADE 6

WEEK 1
• Online Lesson 1

Intro to Scratch
• Classroom Activity 1

Fun with Machine
Learning

WEEK 2
• Online Lesson 2

Make a Racing Game
• Classroom Activity 2

Random Rollers

WEEK 3
• Online Lesson 3

Two-Player Pong
• Classroom Activity 3

Video Game Design

WEEK 4
• Final Project

Make Your Own Game

Efficient Code Subprograms and
Defined Count Analysis of Data

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.2

Strings are sequences of letters or other characters.
Your computer password is a good example of a string.

Finally, Boolean data is data that only has two possible
values. For example, if we ask students a question like
“Do you like ice cream?”, their answers – either yes or
no – would represent Boolean data.

In Scratch, the platform we use for Coding in the
Classroom, data can be stored as variables or in
structures called lists.

Variables are single pieces of data that we tell our
computer to remember. For example, we might create a
variable called “Score” and set it to 0 at the start of our
program.

Later, we can update the value of our variable or call on
it for some purpose.

Coding with variables. In the first example, the Score
variable is increased by 1 whenever the space bar is
pressed. In the second example, the program calls the
Score variable and checks if it is equal to 50.

Lists are multiple pieces of data stored in a particular
order. Each piece of data in the list is assigned an item
number as seen in the following example:

Once our data is stored, we can retrieve information
about the list. Can you figure out what value would be
returned from each of these commands? See bottom of
page for answers.

Although Scratch isn’t typically used for data analysis,
it is an excellent learning tool for new coders. The
concepts of variables and lists are transferable to other
software and coding languages.

Answers. (1) hummus; (2) 4; (3) false – the list does
not contain “poutine”.

DATA TYPE EXAMPLES

1 -5 12.27 “abcdef”
 “Coding 4 Ever”

True
False

Numbers Strings Boolean

1)

2)

3)

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.3

PROGRAM SCHEDULE
The Coding in the Classroom program will last four weeks.
Here is a detailed guide of what you will be doing each week.

BEFORE WEEK 1

Read through this teacher guide, including the instructions for the three
online lessons. If you have time, you may want to try the online activities
for yourself.

Make sure your class has access to devices (laptops or tablets) for each of
the online lessons. Your class will also need devices for the final project.

WEEK 1

Online Lesson 1 – Intro to Scratch

This lesson introduces students to Scratch, an online coding platform.
Students will use variables and lists to make their own “clicker” game.

PREP Log onto computers and open Scratch. Ask students to “Join
Scratch” and make an account using their school email address.

POST Complete “Classroom Activity 1 – Fun with Machine Learning” before
next online session.

See Page 8.5 for lesson instructions and Page 8.10 for
a quick reference guide.

Classroom Activity 1 – Fun with Machine Learning

Students will explore the power of machine learning by training a model to
correctly classify their drawings.

See Page 8.15 for activity instructions.

WEEK 2

Online Lesson 2 – Make a Racing Game

In this activity, students will edit an incomplete Scratch file to make a
working game. Students will use conditional statements and variables to
control their racing sprites.

PREP Have students log into their Scratch accounts and open the
activity link.

Week 2 Random Rollers

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.4

POST Complete “Classroom Activity 2 – Random Rollers” before next
online session.

See Page 8.18 for lesson instructions and Page 8.23 for
a quick reference guide.

Classroom Activity 2 – Random Rollers

Your class will compare theoretical and experimental probabilities in dice
rolling games and use a dice roll simulator.

See Page 8.26 for activity instructions.

WEEK 3

Online Lesson 3 – Two-Player Pong

Students will turn back the clock to make their own version of Pong.
The lesson will explore variable types and apply transformations on a
Cartesian plane.

PREP Have students log into their Scratch accounts and open the activity
link.

POST Complete “Classroom Activity 3 – Video Game Design” and the Final
Project.

See Page 8.31 for lesson instructions and Page 8.36 for
a quick reference guide.

Classroom Activity 3 – Video Game Design

Students will prepare for their final coding project by completing a Game
Design Document.

See Page 8.40 for activity instructions.

WEEK 4

Final Project – Make Your Own Game

Students will apply their learning to make their own game in Scratch.
When they’re finished, they will share their projects for you to evaluate.

See Page 8.44 for project instructions.

AFTER WEEK 4

Keep the coding going with the additional resources on Page 8.49!

Week 3 Game Design Document

Week 4 Make Your Own Game

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.5

ONLINE LESSON 1

Intro to Scratch
(Clicker game with leaderboard)
60 MINUTES

The three online lessons and final project all use Scratch. Though it isn’t
typically used for data analysis, Scratch does allow us to store data as
either variables or lists. If you are new to Scratch, you can check out
their “Getting Started” tutorial. You can also learn more about Scratch
variables here and lists here.

In this lesson, you will introduce students to Scratch and have them make
their own accounts. The goal is to familiarize students with Scratch and
some of its basic commands. Along the way, students will use variables
and lists to create a clicker game with a leaderboard.

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing code, including
code that involves the analysis of data in order to inform and
communicate decisions

• Math C3.2 – read and alter existing code involving the analysis of data
in order to inform and communicate decisions, and describe how
changes to the code affect the outcomes and the efficiency of the code

DATA LITERACY

• Math D1.2 – collect continuous data to answer questions of interest
involving two variables, and organize the data sets as appropriate in
a table of values

QUICK LINKS

Student Activity Link
scratch.mit.edu

Finished Example
scratch.mit.edu/
projects/818520725

PowerPoint
Grade 8 – Week 1
Intro to Coding

Quick Reference
Intro to Scratch (Clicker
Game with Leaderboard) -
Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/ideas
https://www.youtube.com/watch?v=wS1QETPfgGE
https://www.youtube.com/watch?v=1rb226XBBMo
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818520725
https://scratch.mit.edu/projects/818520725

View links and download digital materials at niiexplore.ca 8.6

LESSON BREAKDOWN

SLIDE 1 - SET UP AND INTRODUCTION

Open the PowerPoint slides and Scratch links on your
own computer. Project for the students to see.
Open or print the Intro to Scratch (Clicker Game with
Leaderboard) - Quick Reference for your own use
during the lesson.

SLIDE 2 - WHAT IS CODING?

Check if your students have coding experience and if
they’ve used Scratch before. Ask them what coding
means. Answer: Coding is when we give instructions
to a computer.

SLIDE 3 AND 4 - WHAT TO EXPECT

Your class will complete three online lessons (using
Scratch), three classroom (offline) activities, and a final
project (make their own game).

If your students make a game that they are particularly
proud of, please share it with us at explore@nii.ca.
NII Explore periodically awards prizes to some of our
favourite coding projects.

SLIDE 5 - READY TO START

Have students open the activity link on their devices.
It should take them to the Scratch home page.

MAKING SCRATCH ACCOUNTS

Start the first week by having all the students make
Scratch accounts. This will let them save their projects
and access them at home or on another day. It may
take a few minutes but will be worthwhile in the long
run.

Click “Join Scratch” in the top right. Create a username
and password. Have students choose a username that
will be easy for them to remember. For their password,
they should choose something that is hard to guess.
As an added measure, encourage them to write down
their login credentials in a safe place.

It is not the best practice from a security standpoint,
but for simplicity, they could use the same password
that they use to log into their computers.

If their username is taken, have them add numbers at
the end of it.

They do not need to give out their personal details
other than an email address. Have them use their
school email address.

If students already have Scratch accounts, they can log
into them to start.

DEMO

Show the finished game to give students an idea of
what they are working towards. You can make your own
game or use this one:

scratch.mit.edu/projects/818520725

Click the four arrows icon to make the game full screen
then click the green flag to start. See how many times
you can click on the unicorn before the timer runs out
then enter your name to be added to the leaderboard.

TOUR OF SCRATCH

NOTE: If students have used Scratch before, you can
speed through this part.

Have students create a new project then give them a
tour of Scratch. Show them where the coding window
and preview window are, and where they can access
blocks for their code. See Page 8.11 for more details.

http://niiexplore.ca
mailto:explore%40nii.ca?subject=
https://scratch.mit.edu/projects/818520725
https://scratch.mit.edu/projects/759070219

View links and download digital materials at niiexplore.ca 8.7

CHOOSING A SPRITE AND BACKDROP

Have students choose a backdrop (bottom right
corner).

Have students delete the default cat sprite (garbage can
beside the sprite icon in the bottom right) and pick a
new sprite (blue cat button in bottom right).

Ask students to share which backdrop and sprite they
picked so you know when they’re ready to move on.

CREATE SCORE VARIABLE

We want to be able to keep score in our game. The
score is something that can change or “vary” which
is why we call it a variable. We use variables to store
single pieces of data.

Go to Variables and then “Make a Variable”. Name it
“Score”.

You can also delete the default “my variable” by right-
clicking on it and choosing “delete”.

INITIALIZE SCORE - STEP 1 IN QUICK REFERENCE

Ask students “What should the score be when we start
a new game?” (Zero).

Add “when green flag clicked” to begin the program.

Then add “set Score to 0” right after the green flag
block.

Now the score will be reset to 0 whenever you click the
green flag to start a new game.

SCORING POINTS - STEP 2 IN QUICK REFERENCE

Add “when this sprite clicked” then “change Score
by 1”.

The score will go up by 1 every time the target
sprite is clicked.

OPTIONAL You can also have the sprite pulse when
it’s clicked by adding change size by 10 → Wait 0.05
seconds → Change size by -10.

TEST THE GAME

Have the students test the game – does the score go
up? Does it reset to 0 when you start a new game?

When everyone is ready, run a friendly competition
with the students. See who can get the most clicks in 10
seconds. Ask them to share their scores.

MOVING SPRITE - STEP 3 IN QUICK REFERENCE

To make the game harder, let’s make the sprite move
around the screen.

Under the green flag section, add a “forever” loop
(found in Control) then put “go to random position”
(found in Motions) inside the loop [Step 3a].

Have students test the game and see what happens.
The sprite moves way too fast, but students find it
funny.

SLOWING DOWN - STEP 3 CONTINUED

ASK: How can we make it go slower?

HINT: Check out the options in Control.

Answer: Add “wait 1 seconds” after “go to random
position” [Step 3b]

TEST AGAIN

Have students test their games again. They can tweak
the wait time between sprite movements to suit their
tastes. For example, they could set the wait time to
something like 0.8 seconds if they want the game to be
a bit harder.

Testing the games regularly helps keep the students
engaged, but it’s also good practice to test code often
to spot mistakes early.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.8

SETTING TIMER - STEP 4 IN QUICK REFERENCE

Students will now add a timer, so their games don’t
go on forever.

Create a new variable called “Timer”. The timer variable
should now appear in the top left corner of the game
window. You can leave it there or you can drag the
timer readout to the top right corner and change it to
“large readout”. You can do this by double clicking or
right clicking on the timer display.

Next, add the following code under a new “when green
flag clicked” block. Ask students what they think
should come next as you build out this timer code. For
example, ask them when you should repeat until or
what we should change the timer by.

When green flag clicked → Set Timer to 10 → Repeat
until “Timer = 0” → Wait 1 second → Change Timer by
-1 [Steps 4a and 4b]

They can now test that the timer does indeed count
down.

ENDING GAME - STEP 5 IN QUICK REFERENCE

Finally, we will want the sprite to disappear and stop
moving once the timer expires. Underneath the timer
code, add hide → stop (other scripts in sprite)
[Step 5a].

You will also need to add a show block at the very start
of your program [Step 5b]. You can either tell students
that or have them figure it out on their own.

TEST

Have students play a few games and have them
report their scores back to you.

ASK: Why do you think we set our timer to 10
for testing?

Answer: We don’t want our testing to take too long.
We can increase the timer once we know that our game
works.

CREATE LEADERBOARD - STEP 6 IN QUICK
REFERENCE

The final step is to create a leaderboard of sorts to keep
track of the results. At the end of the game, we will ask
the player to input their name. Then we will add their
name and score to two lists to create a rudimentary
leaderboard.

Create two lists

Under “Variables” select “Make a List” and create a list
called Name then a second list called Score. Reposition
the lists so they pop up in the center of the preview
window.

Adding to the lists

At the bottom of your code (under the stop command),
add Ask “Enter Name” and wait [Step 6a]. Whatever
the player enters there will be temporarily stored as a
variable called “answer” – we want to add that variable
to our list of names.

Put add (answer) to (Name) to add the player’s name
to the Name list then add (Points) to (Score) to save
their score to the Score list [Step 6b].

Show and hide lists

Finally, you want the lists to show up on screen when
the game ends and hide when the next game begins. At
the end of your code, put show list (Name) and show
list (Score) [Step 6c]. Then at the start of your code,
add hide list (Name) and hide list (Score) [Step 6d].

NOTE: This isn’t a true leaderboard because the
results won’t be sorted to show the highest score first.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.9

It is quite possible to create a proper leaderboard
like this, but it is beyond the scope of this lesson. If
you’re interested, see the bonus section of the Quick
Reference document.

FINAL TEST

Give students time to play through their games, try
each other’s games, or share with you and the rest of
the class.

OPTIONAL ADD-ONS

Suggest some extra things students could add to
their games.

• Pulse animation: Have the sprite grow then shrink
when clicked on “change size by 10 → wait 0.05
seconds → change size by -10”

• Change time: How long should the game last?

• Change sprite size: Sprite gets smaller each time it’s
clicked or just starts and stays smaller

• Change speed: Make the wait time shorter or longer

• Add extra sprites: Copy the movement and scoring
code over to a new sprite. Perhaps this sprite is
smaller or moves faster and is therefore worth
more points

• Clear leaderboard: To reset the leaderboard, go
to “Variables” and click delete all of (Name) then
delete all of (Score)

SLIDE 6 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they learned.
What are the two ways we can store data in Scratch?

Answer: Variables and lists.

SLIDE 7 - POEM OF THE DAY

Each slideshow ends with a Poem of the Day to recap
the lesson. Introduce the concept of the Poem of the
Day then read the poem together.

SLIDE 8 - WHAT’S NEXT?

Let students know when you will be coding again.
We recommend alternating between the online lessons
and the classroom (offline) activities. It requires less
screen time for your class and will give students more
time to reinforce the new information.

Quickly preview what you will be doing next week. You
will be making a game that uses variables in a new way.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.10

QUICK REFERENCE

Intro to Scratch
(Clicker game with leaderboard)
After making Scratch accounts, you will give students a tour of Scratch
and introduce them to some basic commands. The goal is to familiarize
students with Scratch and block-based coding. By the end of the class,
each student will have made a timed clicker game with a leaderboard.

SET UP

• Have students open Scratch and either create a new account
or log into an existing one

• Open Scratch on your own computer and create a blank project.
Open the finished version of the game as a demo

QUICK LINKS

Student Activity Link
scratch.mit.edu

Finished Example
scratch.mit.edu/
projects/818520725

http://niiexplore.ca
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818520725
https://scratch.mit.edu/projects/818520725

View links and download digital materials at niiexplore.ca 8.11

Switch between
code and costumes

Coding Block
categories

Choose a coding
block

Coding
 window

List of
sprites

Sprite
properties

Choose a
sprite

Choose a
backdrop

Rename project

Which sprite am
I editing?

Start/stop
program Preview

window
Show project

full screen

SCRATCH TOUR

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.12

THE CODE

This document shows the finished code with annotations explaining what
each section does and a suggested order. Check out the lesson plan on
Pages 8.6 to 8.9 for a more detailed breakdown of the lesson.

Step 1. Initialization – Score is reset
to 0 when a new game starts.

Step 5b. Make the sprite reappear at
the start of the next game.

Step 6d. Hides the leaderboard during
gameplay.

Step 2. Player scores a point every time
this sprite is clicked.

Step 3a. Sprite is forever moving to a
random position, waiting 1 second,
then moving again. This loop won’t end
until it receives a “stop” command.

Step 3b. Students can change the wait
time to suit their taste.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.13

Step 4a. Set the starting time for the
timer. Students can change this later,
but we use 10 seconds for testing
purposes.

Step 4b. Wait 1 second then
decrease the timer by 1.
Repeat this process until
the timer reaches 0.

Step 5a. Hides the sprite and stops its
movement after the timer reaches 0.

Step 6a. Ask the player to input their
name.

Step 6b. Add their answer (i.e., their
name) to the Name list and their
score to the Score list.

Step 6c. Show both lists. These lists
represent the “leaderboard” that will
appear at the end of the game.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.14

BONUS – SORTED LEADERBOARD
It probably isn’t realistic that you will have time to properly explain and
implement this during a 1-hour class, but here is the code for a sorted
leaderboard. There are many ways to do this, but this method worked
for us.

How it works:
After the player enters their name, the program needs to sort through the
existing list to find the correct place to slot in this new player and their
score (often called “insertion sort”). To do that, we will use a temporary
variable called “rank” and a repeat until loop. Beginning with the first
item in the Score list (i.e., rank #1), the algorithm checks if the new score is
bigger than the existing score. If it is, then the loop ends, and the player’s
name and score are inserted in the #1 position of their respective lists. If
the new score is smaller, the process continues by comparing the score to
second-place on the list (i.e., rank #2).

We can continue this process by increasing the rank variable by 1 each
time. Finally, we also need to stop this process if the rank variable ever
exceeds the length of the existing list (i.e., the new score is lower than all
previous scores). In that situation, the player and their score are slotted in
at the end of the list.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.15

CLASSROOM ACTIVITY 1

Fun with machine
learning
45 MINUTES

Students will collect data to train a machine learning model.
They will then test the model’s performance and make it better.

NOTE: No prior knowledge of machine learning is required.

 ACTIVITY LINK

teachablemachine.withgoogle.com/train/image

LEARNING OBJECTIVES

• Analyze data using computers
• Understand the basics of machine learning

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Math D1.2 & D1.6 (Data Literacy)

SET-UP

This activity works best if you have one computer for every 2-3 students, but
it can also be done with a single teacher computer. Watch this video tutorial
before the class. Open the activity link on your computer(s).

INSTRUCTIONS

SUMMARY
Students will be working with Google’s Teachable Machine, a machine
learning platform. The class will draw cats and trees as training data for the
algorithm. They will then train the model, test how well it works, and make
improvements.

1. Show students this introductory video.

2. Discuss machine learning as a class.

MATERIALS

The class will need:

• At least one computer
with Internet connection
and a webcam (e.g., the
teacher’s computer)

• Scrap paper and
something to draw with

http://niiexplore.ca
https://teachablemachine.withgoogle.com/train/image
https://www.youtube.com/watch?v=bIKOn0tXFU0
https://www.youtube.com/watch?v=T2qQGqZxkD0

View links and download digital materials at niiexplore.ca 8.16

WHAT IS MACHINE LEARNING?

Machine learning is the process of teaching computers
(machines) how to solve specific problems. We start
by giving the computer lots of data and a desired task.
The computer then uses that data to create a model to
perform the task. We can then test the model with new
data to see how well it works.

3. Explain today’s activity. “We will be training a
machine that can tell the difference between
drawings of cats and trees. But first, let’s see how
good you are at this task.”

4. Draw a cat on the board. Ask the students “Is this a
cat or a tree?” Next, draw a tree on the board. Ask
“Is this a cat or a tree?” Ask “How did you know?
How could you tell the difference?”

PART 1 – DATA GENERATION AND INPUT

NOTE: These instructions are written as if you only have
one computer (i.e., your teacher laptop). If you have
more computers, you can divide students into groups
such that every group has a computer.

5. The class will now generate training data for the
model. Split the class into partners.

6. Within each pair, have one student draw a cat and
the other draw a tree. As they are drawing, rename
your two data classes as “Tree” and “Cat”.

7. As students finish, ask them to bring their drawings
to you. Using the webcam and the “Hold to Record”
button, take several pictures of each student’s
drawing and add the images to the appropriate
class.

PART 2 – TRAINING THE MODEL

8. Once the data is uploaded, it’s time to train the
model. Simply click the “Train Model” button and
wait until it’s ready. It should only take a minute.

 The Teachable Machine is using the images you
gave it to create a model (algorithm) that can
classify the images (i.e., decide what’s a tree and
what’s a cat).

PART 3 – TESTING THE MODEL

9. When the model is ready, you can test how well it
works. Pick a volunteer and have them hold their
drawing up to the webcam. The preview window
will show how confident it is about its classification.
For example, it might be 97% sure the drawing is a
cat.

10. The model should do very well at the first test
because you are using images that were part of its
training data. Next, you will test how well it works
on pictures it has never seen before. Have each
student draw a new picture. Those who drew trees
will now draw a cat and vice versa. Encourage
students to draw pictures that look different than
the originals (e.g., different type of tree, more
detailed cat, use colours).

11. One by one, have students bring their new drawings
to the front and test it using the webcam. Make a
pile of pictures that the model got right and ones
that it has trouble with. Next, we can improve the
model’s performance by collecting the ones it got
wrong and adding them as training data. You will
then need to retrain the model.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.17

12. For the final test, ask students to draw a picture
that is halfway between a tree and a cat. For
example, it could be a cat stuck in a tree or a tree
with whiskers. Test the model again using these
pictures and discuss the results. Challenge students
to create an image that the model perceives as a
50/50 split.

13. Debrief the activity using the discussion questions
as a guide.

DISCUSSION QUESTIONS

During the lesson

The machine needed lots of examples to use as
training data, but you were able to identify trees and
cats right away. Why do you think that is?

Answer: You’ve seen lots of trees and cats before, but
humans are also just much better at this kind of thinking
than machines are.

Which drawings did the model struggle to classify
when we tested it? Why do think it was hard?

Possible answer: Machines have trouble with images
that are too different from their training data. For
example, they might recognize pointy trees but not
rounded ones.

What happened when we intentionally tried to
confuse the model? Why might a programmer do this?

Possible answer: Programmers can improve the model’s
performance by teaching it how to deal with tricky data.

After the lesson

What advantages do humans have over machines
when it comes to classifying data? What are machines
better at?

Possible answer: Humans are generally better at pattern
recognition and making judgments. Machines can
process information much faster. For example, humans
might be better at sorting cats vs. trees in terms of
accuracy, but a machine can sort through millions of
images quickly.

Why do machines need to create their own
models? Why can’t a coder just program the model
themselves?

Answer: There are some tasks that we can’t explain to
a computer in a language it will understand. We can’t
really write a program for computers to reliably tell the
difference between pictures – the program is simply too
complex for us to write.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.18

ONLINE LESSON 2

Make a racing game
60 MINUTES

In this lesson, students will be editing an existing Scratch file to make a
racing game. Students will use conditional statements and a “hidden”
speed variable to control race car sprites as they drive around a custom
track. As possible extensions, students can introduce new obstacles, add
power-ups, add a second player, or create new racetracks.

CURRICULUM CONNECTIONS
CODING
• Math C3.1 – solve problems and create computational representations

of mathematical situations by writing and executing code, including
code that involves the analysis of data in order to inform and
communicate decisions

• Math C3.2 – read and alter existing code involving the analysis of data
in order to inform and communicate decisions, and describe how
changes to the code affect the outcomes and the efficiency of the code

GEOMETRIC AND SPATIAL REASONING

• Math E1.4 – describe and perform translations, reflections, rotations,
and dilations on a Cartesian plane, and predict the results of these
transformations

OPERATIONS

• Math B2.7 – multiply and divide integers, using appropriate strategies,
in various contexts

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/761542706

Finished Example
scratch.mit.edu/
projects/818521530

PowerPoint
Grade 8 – Week 2 – Video
Game Variables

Quick Reference
Make a Racing Game –
Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/projects/761542706
https://scratch.mit.edu/projects/761542706
https://scratch.mit.edu/projects/818521530
https://scratch.mit.edu/projects/818521530

View links and download digital materials at niiexplore.ca 8.19

LESSON BREAKDOWN

SET UP
Open the PowerPoint slides and the Scratch links
on your own computer. Project for the students to
see. Open or print the Make a Racing Game - Quick
Reference for your own use during the lesson.

Get the students logged onto their computers with the
activity link open.

SLIDE 1 - WEEK 1 RECAP

Ask students to recall what they learned about in Week
1. What are two ways we can store data in Scratch?
(Variables and Lists) What’s the difference? (Variables
have a single data point, lists can hold many)

SLIDES 2 TO 5 - THE MATH OF VIDEO GAMES

Use slides to discuss video games as an application of
coding and data analysis. See the slide notes for talking
points.

DEMO

Quickly demonstrate a finished version of the game
so students know what they are working towards.

Link to finished game:
scratch.mit.edu/projects/818521530

NOTE: Use the up arrow to drive forward, the down
arrow to reverse, and the left/right arrows to turn.
You may find it easier to use two hands.

SLIDE 6 - LOG INTO SCRATCH

Have students log into their Scratch accounts and
open the activity link.

Have them click “Remix” to make their own version of
the project and then change the title to something of
their choosing. There should be a big, red car in front of
a racetrack with three lakes.

Explain that their file is partially complete – the sprites
(cars) and backdrops (tracks) were pre-made by NII, but
they will have to write the code.

INITIALIZE SPRITE - STEP 1 IN QUICK REFERENCE

Have students set an appropriate size for their race
car sprite and drag it to the start line.

After dragging the car behind the start line, students
will initialize the sprite by adding go to x: (value) y:
(value) → point in direction 90 → set size to (value)%
underneath the first when green flag clicked block
[Step 1].

Now the sprite will start in the correct position and
direction when the game begins.

ENABLE FORWARD AND REVERSE MOVEMENT -
STEP 2 IN QUICK REFERENCE

Now it’s time to make the car sprite move. For this
game, the sprite will be able to drive forward and
reverse and turn to the left and right. How much help
you give the students will depend on how quickly they
seem to pick up on the patterns.

In the red car’s code, you will see a second when
green flag clicked block with a forever loop and four
conditional statements inside it. To drive forward,
students will need to figure out what to add inside the
first conditional statement.

http://niiexplore.ca
https://scratch.mit.edu/projects/818521530
https://scratch.mit.edu/projects/738313099

View links and download digital materials at niiexplore.ca 8.20

Answer: when green flag clicked → forever → if <key
up arrow pressed?> then → move 5 steps [Step 2].
You can think of this like pressing the gas. Have the
students test that their car can drive forward.

To reverse, students will need to fill in the second
conditional statement (the one for the down arrow)
ASK: What do we need to change to make our car
reverse?

Answer: Change the positive to a negative i.e., move -5
steps [Step 2 continued].

Have students test again.

ENABLE TURNING - STEP 3 IN QUICK REFERENCE

To turn left and right, they will need to fill in the other
two conditional statements.

Answer: To turn left, they will add if <key left
arrow pressed?> then → turn 5 degrees
(counterclockwise) and to turn right they will put
if <key right arrow pressed?> then → turn
5 degrees (clockwise) into the third and fourth
conditional statements [Step 3].

Students should now be able to practice driving their
cars around the track using the four arrow keys.

CREATE A SPEED VARIABLE - STEP 4 IN QUICK
REFERENCE

Remind students about variables from last week (“We
used a variable to keep track of the score”) and from
today’s intro (“Video games store a lot of data behind-
the-scenes that the players never see”).

Create a variable called “speed” and make it hidden
(uncheck the blue box beside the variable name).

We are going to change the variable based on which
surface (colour) the car is touching. The car should go
fastest on the pavement (grey), slower on the grass

(green) and slowest in the water (blue).

To do this, put if <touching color (grey)? Then → set
speed to 5 inside your existing forever loop (before the
movement code). To make sure you select the correct
shade of grey, click on the colour in the light blue
sensing block then use the eyedropper tool to choose
the same colour as the road [Step 4].

SET OTHER COLOUR CONDITIONS - STEP 4

CONTINUED

Get the students to repeat the same process with the
other two colours – i.e., green and blue. We find that
green = 3 and blue = 1 works well, but students can
tinker with these values.

ADD THE SPEED VARIABLE INTO THE
MOVEMENT CODE

We have now set the speed variable and changed its
value based on the colour that the car is touching, but
we still need to use that value in our code.

Have students replace the “5”s in all their movement
blocks with “speed”. For example, they should move
(speed) steps instead of move 5 steps. Do the same
thing for the turning code.

The trickiest part is reversing because we actually want
it to be negative speed. Let students try to problem
solve, offering some hints as needed.

Answer: move (speed * -1) steps

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.21

PLAY TEST

Have students test their game. They should be able
to play through the whole game and have the speed
update whenever they change surfaces.

Take the time now to help anyone who is
having problems.

NOTE: If this is as far as you get, that is quite alright.
The rest is fun, but not necessary.

ADD LAP COUNTER - STEP 5 IN QUICK REFERENCE

The game should be fully playable at this point, but
there are some more elements we can add to make the
game more “game-like”. One of those additions is a lap
counter. We will be working underneath the third and
final (rightmost) when green flag clicked block for this
last part. Some of the code is pre-populated.

Start by creating a new variable called “red lap” (we
will specify the colour just in case we want to turn this
into a 2-player game later on).

Immediately underneath the “when green flag clicked”
add set red lap to 0 [Step 5a].

Then inside the first if-then statement in the forever
loop add change red lap by 1. Ask students what
colour they should put inside the “if touching (colour)
then” blocks. Answer: the pink colour of the start/
finish line [Step 5b].

Use the eyedropper tool to ensure that the pink colour
in both conditional statements exactly matches the
colour of the start/finish line [Step 5c].

EXPLANATION OF CODE: We want to increase the lap
counter whenever we pass the pink start line, but we
only want it to increase once which is why we need
the “wait until <not> touching color (pink)” part.
Otherwise, the lap counter would keep increasing as

long as the sprite is hovering over the start line. The
wait 3 seconds part is to discourage cheating. In theory,
you could just drive forward and reverse across the
start/finish line a bunch of times. By forcing the player
to wait 3 seconds, it encourages them to actually drive
around the track.

PLAY TEST

Test the game again. Does the lap counter go up each
time they cross the start/finish line?

The most common mistake is that their chosen pink
colour is not an exact match (i.e., they didn’t use the
eyedropper tool).

SET END CONDITIONS - STEP 6 IN QUICK REFERENCE

We probably don’t want our game to go on forever, so
we’ll need to set an end condition. To do that, we will
add an if-statement into our lap counter code.

Find the code that says if (blank) > 3 then → broadcast
(red wins) → stop (all) [Step 6].

Ask students what they should put into the blank.
Answer: red lap variable

Students can set a larger lap number if they’d like, but
smaller numbers are better for testing.

The “Winner” sprite is pre-programmed to appear
when it receives the “red wins” broadcast message.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.22

OPTIONAL - ADD A SECOND PLAYER

There is a second, yellow car that the students can add
if they want to make it a two-player game. Have them
copy all their code from the red car over to the yellow
car. They can do this by dragging the code over or by
adding it to their backpack first.

Then they will need to make the following changes
to their code:

1. Change starting positions so the cars start side
by side.

2. Change up arrow to “w” key, down arrow to “s” key,
right arrow to “d” key, left arrow to “a” key (or some
other similar arrangement).

3. Add a “yellow lap” variable. Change “red lap” to
“yellow lap” anywhere it appears. Make “yellow
lap” visible.

4. Change “broadcast red wins” to “broadcast
yellow wins”.

PLAY TIME

The game is now fully complete. Give the students time
to play and enjoy. They can race against each other.

BONUS - CUSTOMIZE THE GAME

There probably won’t be time to explore these in class,
but here are a few extra things students could try if they
choose to keep working on their games either for fun or
for their final projects.

Custom Maps

NII made a couple extra maps that the students can
play. They can switch the backdrop to try these other
courses. They could also try drawing their own courses!
They’ll just need to make sure that the colours in their
backdrop match the ones in their code.

Obstacles or Power-ups

Students can play around with adding even more
colours to their backdrops. For example, they could
add a brown splotch (like mud) that has an even
slower speed than the water. Alternatively, they could
add a speed boost (say orange) on their track that
temporarily increases the player’s speed.

Even more players

It might get squishy around the keyboard, but in theory,
students could add even more players to their game
(3- or 4-player mode).

SLIDE 7 - RECAP

With about 5 minutes left in the class, switch back
to the PowerPoint slides.

Ask students to recall what they learned. “What were
two different ways we used variables in our code?”
(Speed was a hidden variable, our laps were a simple
counter variable) How could we use lists in our game?
(Possible answer: the speeds for each surface type
could be stored in a list).

See slide notes for more discussion questions.

SLIDE 8 - POEM OF THE DAY

Share this week’s poem as a recap.

SLIDE 9 - WHAT’S NEXT?

Quickly preview what you will be doing next week. The
students will turn back the clock to make an arcade
classic.

Try the next classroom activity (Random Rollers) before
next week.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.23

QUICK REFERENCE

Make a racing game
Students will be editing an existing Scratch file to make a racing game. We
will use conditional statements and a “hidden” speed variable to control
race car sprites as they drive around a custom track. As possible extensions,
students can introduce new obstacles, add power-ups, add a second player,
or create new racetracks.

SET UP

• Have students log into their Scratch accounts and open the student link

• Open the finished game on your computer. You will demo the finished
version then open the student version to teach the students

THE CODE

This is the final code with descriptions of what each part does and a
suggested order. See the lesson plan on Pages 8.19 to 8.22 for more
detailed instructions. You will not necessarily get to all of this during a
one-hour class.

SPRITE # 1 - RED CAR

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/761542706

Finished Example
scratch.mit.edu/
projects/818521530

Step 1. Initialization
Moves the car to the correct starting
position, points it in the right direction,
makes it an appropriate size.

http://niiexplore.ca
https://scratch.mit.edu/projects/761542706
https://scratch.mit.edu/projects/761542706
https://scratch.mit.edu/projects/818521530
https://scratch.mit.edu/projects/818521530

View links and download digital materials at niiexplore.ca 8.24

Step 4. Set speed conditionally
Changes the car’s speed based
on the surface (colour) that it
is touching. Car goes fastest on
the grey pavement and slowest
through the blue water.

Step 2. Forward/reverse
movement
Car moves forward at “speed”
when up arrow is pressed and
backwards (-speed) when the down
arrow is pressed. NOTE: The *-1
is needed for the reverse arrow to
work.

Step 3. Turning
Enables the right/left arrows to
allow the sprite to turn. Note that
the turning uses the same speed
variable as the forward/reverse
movement.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.25

Step 5a. Set lap counter to 0 at
start of game.

Step 5b. Increase lap counter each
time player crosses the pink start/
finish line.

Step 6. Trigger the end game when
the target lap number is reached/
exceeded. In this case, the game will
end after the red car finishes 3 laps.

Step 5c. Prevents the lap counter
from increasing multiple times
when touched. “Wait 3 seconds”
prevents players from simply driving
back and forth over start/finish line.

Initializes sprite position and
visibility.

Appropriate winner message appears
when the different broadcast
messages are received.

SPRITE # 2 – YELLOW CAR

The code for the yellow car is almost exactly the same as the red car.
See the Instructor Guide or the finished Scratch file for the few
differences.

SPRITE #3 - WINNER MESSAGE

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.26

CLASSROOM ACTIVITY 2

Random rollers
45 MINUTES

Students will compare theoretical and experimental probabilities, then
see how their results stack up against a computer!

LEARNING OBJECTIVES

• Determine and compare the theoretical and experimental
probabilities of independent events

• Use code to perform data analysis

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Math D1.2, D2.1 & D2.2 (Data)

SET-UP

Print and hand out student worksheets. Gather required materials.
Open the Scratch file below on your computer.

Dice Simulator: scratch.mit.edu/projects/738168819

INSTRUCTIONS

SUMMARY
Students will be comparing the theoretical and experimental results of
rolling two dice. At the end, you will simulate thousands of dice rolls on
Scratch to demonstrate the power of coding.

1. Ask students to recall what they learned in the online coding classes.
ASK “What are two ways data can be stored in Scratch?” (Variables
and lists) “What advantages do computers have when it comes to
data analysis?” (They can store huge amounts of data and perform
calculations very quickly)

2. Explain the motivation and premise of the activity. SAY “Lots of
popular board games involve rolling dice – Monopoly, Snakes and
Ladders, Catan, etc. Today, we will figure out the theoretical results
of rolling two dice. Then we will try the experiment for ourselves and
see how it compares.”

MATERIALS

Each pair of students
will need:

• 1 worksheet

• 2 six-sided dice

• A calculator

The teacher will need:

• 1 device with Internet
access (e.g., school
laptop)

Week 2 Random Rollers Worksheet

http://niiexplore.ca
https://scratch.mit.edu/projects/738168819

View links and download digital materials at niiexplore.ca 8.27

PART 1 – THEORETICAL PROBABILITY

3. Divide students into partners and have them
complete Questions 1 and 2 on their worksheet.
They will be filling in a grid to calculate the
theoretical probability of each result when rolling
two dice. Help students read and follow the
instructions as needed.

PART 2 – EXPERIMENTAL PROBABILITY

4. Give two dice to each set of partners. Students
will roll the dice 50 times and record the results
in Question 3 of their worksheet. While they are
collecting their data, draw a table like the one
below on the board. When the students are done,
have one student in each pair calculate the percent
probability for each outcome and record it on their
worksheet. Have the other student add their results
in the first two rows of your table on the front
board. See Figure 1.

5. Have students answer Question 4 on their
worksheet and discuss their answers as a class.

6. You will now combine all the results from the class
into a single data set. Before you begin, ask the
students to predict: If we combine all our data, will
our results be closer or farther from the theoretical
probabilities?

7. As a class, add up the results in each section of your
big chart. Divide by the total number of rolls to get
the experimental probability for each outcome.
Students will record these answers in Question 5 of
their worksheet and compare these probabilities to
their earlier results in Question 6.

PART 3 – COMPUTER SIMULATION

8. Open the Dice Simulator in Scratch and project it
for the students to see. Click “Roll” a few times to
show the students how it works. If time allows, you
can also take a closer look at the code inside. After
doing a few rolls, click “Reset” to clear the counters.

9. Point out the “x1000” button. ASK How long do you
think it will take the computer to simulate 1000 rolls?
How long would it take you?

 Click “x1000” and observe the results. Click it until
you reach 10,000 total rolls (or another similarly
large number).

10. Have students record the simulator’s results in
Question 7 of their worksheet and calculate the
probability of each outcome.

Figure 1

p

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.28

(OPTIONAL) PART 4 – PLAY A DICE GAME

11. If time allows or on another day, let students play a
game that involves dice rolling. They will use what
they know about the theoretical and experimental
outcomes to inform their strategy.

 Here is a simple 2-player game:

 Player 1 rolls two dice and says the sum. Player
2 then predicts if their result will be higher, lower
or the same as Player 1’s before rolling the dice. If
Player 2 is correct, they score a point. If Player 2 is
incorrect, Player 1 gets a point. Players alternate
turns until someone reaches 10 points.

12. Have students complete all the questions on their
worksheet. You may also choose to debrief the
activity as a class using the discussion questions
below as a guide.

DISCUSSION QUESTIONS

How did increasing the number of trials affect the
experimental probability?

Answer: As the sample size increases, the experimental
probability gets closer to the theoretical probability. This
is known as the law of large numbers.

What advantage does the computer have over
humans? What advantage do we have?

Possible answer: The computer is much better at
computing experimental probability because they can
perform experiments with a large number of trials.
Humans, however, are better at calculating theoretical
probabilities. Sometimes math problems require
creative thinking, a skill that is distinctly human.

Can you think of another situation that could be
simulated on a computer?

Examples: flipping a coin, rock-paper-scissors games,
lottery draws, entire board games (e.g., chess, checkers,
Monopoly)

What was your strategy in the dice game? How could
you apply what you learned in today’s activity when
playing board games?

Answers will vary.

http://niiexplore.ca

niiexplore.ca 8.29

ACTIVITY 2 WORKSHEET

PART 1 – Theoretical probability

Random rollers
Lots of popular games like Yahtzee, Monopoly, Catan, and many
others involve rolling dice. In this activity, you will find the theoretical
probability of each number when you roll two dice. Then you will try the
experiment for yourselves and compare the results.

1. Complete the chart below to find all the possible results when you add the values of two
dice rolls. Some spaces are filled in for you as examples.

2. Next, complete this table to calculate the probability of each result from 2 to 12.
Again, a column has been completed for you as an example.

NAME

p

http://niiexplore.ca

niiexplore.ca 8.30

PART 2 – Experimental probability

PART 3 – Computer simulation

3. Roll two dice, calculate their sum, then put a tally mark in the appropriate box in the chart
below. Repeat for 50 rolls then calculate your experimental probability of each result.

7. Record the results of the computer simulation in the chart below. How do these results
compare to what you’ve found so far?

4. How did your results compare to the theoretical probabilities? Were any numbers more
common than you expected? Less common?

5. Record the total results for your entire class in the chart below.

6. Whose results were closer to the theoretical probabilities – yours or your entire class?

p

p

p

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.31

ONLINE LESSON 3

Two-player Pong
60 MINUTES

In this lesson, students will make their own version of the arcade classic
Pong. The lesson will draw on the students’ prior coding knowledge,
including conditional statements, loops, variables, and subprograms.
Students will also practice applying transformations (translations and
reflections) on a Cartesian plane.

CURRICULUM CONNECTIONS

CODING

• Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing code, including
code that involves the analysis of data in order to inform and
communicate decisions

• Math C3.2 – read and alter existing code involving the analysis of data
in order to inform and communicate decisions, and describe how
changes to the code affect the outcomes and the efficiency of the code

OPERATIONS

• Math B2.7 – multiply and divide integers, using appropriate strategies,
in various contexts

DATA LITERACY

• Math D1.1 – identify situations involving one-variable data and
situations involving two-variable data, and explain when each type of
data is needed

GEOMETRIC AND SPATIAL REASONING

• Math E1.4 – describe and perform translations, reflections, rotations,
and dilations on a Cartesian plane, and predict the results of these
transformations

QUICK LINKS

Student Activity Link
https://scratch.mit.edu/
projects/762906582

Finished Example
https://scratch.mit.edu/
projects/818525405

PowerPoint
Grade 8 – Week 3 – Video
Game History

Quick Reference
Two-Player Pong – Quick
Reference

http://niiexplore.ca
https://scratch.mit.edu/projects/762906582
https://scratch.mit.edu/projects/762906582
https://scratch.mit.edu/projects/818525405
https://scratch.mit.edu/projects/818525405

View links and download digital materials at niiexplore.ca 8.32

LESSON BREAKDOWN

SLIDE 1 - WELCOME

Open the PowerPoint slides and the Scratch link on
your own computer. Project for the students to see.
Open or print the Two-Player Pong - Quick Reference
for your own use during the lesson.

Ask students to recall what they learned in the previous
two Scratch lessons.

SLIDES 2 TO 7 - HISTORY MINUTE

Use slides to discuss the history of computers and
video games. See the slide notes for talking points.

DEMO

Quickly demonstrate a finished version of the game so
students know what they are working towards.

Link to finished game:
scratch.mit.edu/projects/818525405

NOTE: Left (green) paddle is controlled by the W and S
keys; right (red) paddle uses up and down arrows.

SLIDE 8 - LOG INTO SCRATCH

Have students log into their Scratch accounts and
open the activity link

Have them click “Remix” to make their own version
of the project and then change the title.

Explain that their file is partially complete. They will
have to finish the code to make a working game.

MAKE THE PADDLES MOVE - STEP 1 IN QUICK
REFERENCE

The code is mostly pre-written for the paddle sprites.
Students just need to fill in the conditional statements
for both sprites. Give them time to try this on their own
before sharing the answer.
Answers:

Red Paddle

if key (up arrow) pressed? then change y by 10

if key (down arrow) pressed? then change y by -10

Green Paddle

if key (w) pressed? then change y by 10

if key (s) pressed? then change y by -10

MAKE THE BALL MOVE AND BOUNCE -
STEP 2 IN QUICK REFERENCE

Now that the paddles can move, it’s time to make the
ball move. The ball’s size and starting position are
pre-coded. The “wait 1 second” block gives the players
time to get ready before the game starts.

Start movement

To get the sprite to move, add forever → move 10 steps
→ if on edge, bounce after the “wait 1 second” block
[Step 2a].

To test, click the green flag. The ball should move back
and forth horizontally across the screen, bouncing
when it hits the edge.

http://niiexplore.ca
https://scratch.mit.edu/projects/818525405

View links and download digital materials at niiexplore.ca 8.33

Random direction

We don’t want our sprite to always bounce at the same
angle, so let’s make it start at some random angle. Add
point in direction (pick random 50 to 80) before the
forever loop [Step 2b]. Have the players click the green
flag and see what happens. The ball should bounce
around the screen beginning at a random angle.

MAKE “BOUNCE” SUBPROGRAM - STEP 3 IN QUICK
REFERENCE

We want the ball to bounce off the paddles the same
way it bounces off the walls. To do this, we are going
to use conditional statements and a subprogram. Let’s
start with the subprogram.

Have students click the green flag and watch the ball
bounce. As it bounces, have them pay attention to the
sprite’s direction value in the sprite properties box
(near bottom right of screen). ASK: What happens to
the sprite’s direction when it hits one of the side walls?

Answer: It changes its sign. For example, 75 changes to
-75 and vice versa.

With that knowledge in mind, we will program a
direction for our “bounce” block. The bounce block
is pre-made, but we still need to define it. Under
define bounce (you may have to scroll right to find it),
students will see a point in direction (0). Ask students
– what should go in the blank? Give them time to think
about it and put their math knowledge to the test.
HINT: What can we multiply our direction by to change
its sign? (-1)

Answer: point in direction (-1 * direction) [Step 3]

The “move 10 steps” and “wait 0.5 seconds” are
pre-written and make it so the ball isn’t constantly
touching the paddle sprite.

PADDLES HIT BALL - STEP 4 IN QUICK REFERENCE

We’ve made our “bounce” subprogram – now we will
tell our ball when to execute that command.

Drag out a new when green flag clicked block and
add a forever loop below it. Inside that loop, add two
if-then statements. Ask students if they can figure out
what to put inside the two conditionals.

Answers: if <touching Red Paddle> then → bounce
and if <touching Green Paddle> then → bounce
[Step 4]

PLAY TEST

Have students test their games. At this point, the ball
should bounce back and forth, and they should be able
to hit it with their paddles.

Take the time now to help anyone who is having
problems.

ADD SCORE VARIABLES - STEP 5A IN QUICK
REFERENCE

Let’s start keeping score. First, we will need to create
two score variables. Go to Variables then “Make a
Variable” called green or green score and then do
the same for red. Drag the variable readouts to an
appropriate position on the game screen (e.g., top
corners).

Initialize the scores by adding set green score to 0 and
set red score to 0 at the start of the program [Step 5a].

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.34

SCORE POINTS - STEP 5B IN QUICK REFERENCE

You may notice that there is a green line across one end
of the screen and a red line at the other. These lines
represent each player’s “goal”. Red should score a point
if the ball hits green’s goal and vice versa.

Add two more conditional statements under the
ones you already have (the bounce ones). You could
have students figure out what to put or you can do it
together.

If (touching Red Goal) then → change green score
by 1 and if (touching Green Goal) then → change red
score by 1 [Step 5b]

“RESET BALL” SUBPROGRAM - STEP 6 IN QUICK
REFERENCE

After scoring a point, the ball should reset by going
back to the middle of the screen. To do this, let’s write a
“reset ball” subprogram.

Go to My Blocks and “Make a Block” called reset ball →
Under define reset ball, add hide → wait 1 second, go
to x: 0 y: 0 → point in direction (pick random -50 to
-80) → show [Step 6a].

Add the reset ball block into the appropriate
conditional statements underneath “change green
score by 1” and “change red score by 1” [Step 6b].

Now the ball will disappear and wait a second before
restarting back at the middle of the screen.

PLAY TESTING

The game should now be fully playable. Give students a
chance to play against each other and test each other’s
games. If the game is too easy, they can increase the
ball/paddle speed or make the paddles smaller. If the
game is too hard, they can do the opposite of those
things.

OPTIONAL - ADD A TARGET SCORE

If there’s lots of time left and students are feeling
particularly ambitious, they could add in a target score.
In the original Pong, games were first to 11.

Immediately after “change green score by 1” add if
green score = 11 then → broadcast (green wins).
After “change red score by 1” add if red score = 11 →
broadcast (red wins).

NII Explore has pre-programmed a victory sprite to
appear when it receives either of those broadcast
messages.

BONUS - CUSTOMIZE THE GAME

There probably won’t be time for these during a 1-hour
class, but here are a few extra things students could try.
These could be good ideas for their final projects.

Change speed during game

The ball could get faster and faster as the game goes
on. Otherwise, two good players might end up playing
forever.

Experiment with bounce angles

In the original Pong, the ball bounces at a different
angle depending on which part of the paddle it hits.
Students could experiment with different bounce
angles to give their games an added layer of fun/
complexity.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.35

SLIDE 9 - RECAP

With about 5 minutes left in the class, switch back
to the PowerPoint slides.

Ask students to recall what they learned during the
program. Possible topics: variables, lists, types of
variables, conditional statements, loops. See slide
notes for suggested talking points.

SLIDE 10 AND 11 - FINAL PROJECT PREVIEW

Use the slides to explain the final project.

“You will be applying everything we’ve talked about to
make your own game. You can keep going with one of
the ones we made together and make it even better, or
you can create something new.”

Remind students about the three games you made
together and where they can find their saved projects in
Scratch (click on the file folder in the top right corner).

When students are done, they will share their work for
you to evaluate.

As a bonus, NII Explore is always accepting submissions
to our “Scratchathon” contest. Email your students’
projects to explore@nii.ca - we hand out prizes
periodically for some of our favourite games!

SLIDE 12 - POEM OF THE DAY

Share the final Poem of the Day.

SLIDE 13 - WHAT’S NEXT?

Complete the final project in the next couple weeks
while this lesson is still fresh. If you haven’t already,
try out the classroom activities with your class. Happy
coding!

http://niiexplore.ca
mailto:explore%40nii.ca?subject=

View links and download digital materials at niiexplore.ca 8.36

QUICK REFERENCE

Two-player Pong
In this lesson, students will make their own version of the arcade classic
Pong. The lesson will draw on the students’ prior coding knowledge,
including conditional statements, loops, variables, and subprograms.
Students will also practice applying transformations (translations and
reflections) on a Cartesian plane.

SET UP

• Have students log into their Scratch accounts and open student link

• Open both the student version and the finished game on your
computer. You will demo the finished version then work from the
student version

THE CODE

Here is the final code for all sprites. Parts annotated in GREY will be
pre-populated for the students. Sections marked in PINK indicate code
that you will be adding, and the numbers correspond with the suggested
order of steps from the lesson plan on Pages 8.32 to 8.35.

QUICK LINKS

Student Activity Link
https://scratch.mit.edu/
projects/762906582

Finished Example
https://scratch.mit.edu/
projects/818525405

http://niiexplore.ca
https://scratch.mit.edu/projects/762738355
https://scratch.mit.edu/projects/762906582
https://scratch.mit.edu/projects/762906582
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818525405
https://scratch.mit.edu/projects/818525405

View links and download digital materials at niiexplore.ca 8.37

Step 1. Add the appropriate “change y by ___” blocks to complete
 this movement code.

BALL SPRITE

RED PADDLE GREEN PADDLE

The ball sprite’s size and
starting position are already
initialized.

Step 2b. Start the sprite in a
random direction.

Step 5a. Create score variables
then initialize scores.

Step 2a. Make the sprite move forever
and bounce when it hits the edge.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.38

Step 4. Ball should bounce
when it hits either of the
two paddles.

Step 5b. Change the appropriate
score whenever the ball touches
one of the goals.

Step 6b. Reset the ball back
to the middle after a point is
scored (i.e., after one of the
goals is touched).

Step 3. Most of this subprogram is
pre-written but the students need
to figure out what goes inside this
“point in direction” block.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.39

Step 6a. Create this My
Block (subprogram) to
send the ball back to the
middle after each goal.

Initializes position and keeps it from
moving by accident.

GREEN AND RED GOALS

WINNER MESSAGE SPRITE

OPTIONAL This sprite remains hidden during the game. It is only
programmed to appear when it receives one of the winner broadcast
messages. It will end the game once it appears (stop all command).

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.40

CLASSROOM ACTIVITY 3

Video game design
30–45 MINUTES

Students will prepare for their final coding project by creating
a Game Design Document.

LEARNING OBJECTIVES

• Create a plan for a coding project
• Communicate ideas through writing and concept art

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Language – Writing, Overall Expectation 1
• Arts D1 (Visual Arts)

SET-UP

Print the worksheets for the Game Design Document and Final Project on
the front and back of a single page. They will use the front for this activity
and the back for their final projects.

INSTRUCTIONS

SUMMARY
Video game developers often complete a Game Design Document (GDD) when
making a new game. The document serves as a guiding vision for all teams
working on the project. In this activity, students will create a simple GDD. In the
final project, they will use their GDD as a guide to create their own game.

1. Explain the premise of the activity. SAY “We are going to make our own
games like we practiced in our coding classes. Today, you are going to
create something called a ‘Game Design Document’. The next time we
have the computers, you will be coding your game in Scratch.”

2. Ask students to recall what they learned in the online coding classes.
ASK “What kind of games did we make?” (Clicker Game, Racing Game,
Pong Game) “What kind of games do you like to play?”

MATERIALS

Each student will need:

• 1 worksheet

• Something to write with

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.41

3. Hand out worksheets and go through each section
of the Game Design Document. The students can
either customize one of the games they made
during the online classes (recommended) or create
a new game from scratch (pun intended).

4. Give students time to fill in the document with their
ideas. You can use the guiding questions below to
help students when they get stuck.

 Title
What is your game called? Does it sound like
something you’d want to play?

 Description
What is the game about? How would you explain it
to a friend?

 Characters
What characters (sprites) are in your game? What
do they look like? What do they do?

 Setting
Where does the game take place? What does
the backdrop look like? Does the backdrop ever
change?

 Gameplay
What is the goal of the game? Which sprite(s) does
the player control? How do they control it? How
many players are there? How do you score points?
How does the game end?

 Extras
What extra features will you add to your game?
Examples: sound effects, animations, different
levels, more characters, leaderboard, “You Win”
message

5. When students are finished their GDDs, collect the
worksheets. You will hand them back when you
have computer time for the final project.

http://niiexplore.ca

niiexplore.ca 8.42

Game Design Document
ACTIVITY 3 WORKSHEET

Use this sheet to help plan your own video game. You can use one of our
existing games as a starting point or you can make a different game.
Later, you will make your game in Scratch.

DESCRIPTION What’s the game about?

GAME TITLE

NAME

CHARACTERS Sketch and describe them here.

SETTING Where does the game happen? EXTRAS

GAMEPLAY Explain what happens in the game.
How does the player control their sprite?
Score points? Win the game?

http://niiexplore.ca

niiexplore.ca 8.43

Make your own game
FINAL PROJECT WORKSHEET

QUESTIONS

After you finish and submit your game, answer the reflection questions below.

1. Describe any new feature(s) you included in your game.

2. Which variables did you use in your program? What were they used for?

3. What is one problem you had while making your game? How did you try to fix it?

4. If you had more time, what would you add to your game?

Now it’s time to turn your Game Design Document into your own game. You can make a customized version
of one of the games from the online classes (Clicker Game, Racing Game or Pong Game) or you can create
something new. As a coder, it’s often okay to get ideas from other people’s code as long as you give them credit
and your final game is your own work.

You can add as much detail as you want, but make sure your finished game includes:

 A player-controlled sprite At least 2 types of motion, including a change of x and y
coordinates

 At least 2 variables
(e.g., score, timer, speed, etc.)

 A conditional statement
(if-then or if-then-else)

 A subprogram (or “My Block”) An ending (e.g., “You Win” or “Game Over” message)

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.44

FINAL PROJECT

Make your own
game
60 MINUTES +

Students will apply their coding knowledge to make their own custom game.
It’s a fun opportunity to demonstrate what they’ve learned. Classes can send
their finished games to NII Explore at explore@nii.ca!

LEARNING OBJECTIVES

• Build, test, and improve a game in Scratch
• Write and edit code that includes the analysis of data
• Write a game description and instructions for other users

CURRICULUM CONNECTIONS

• Math C3.1 & C3.2 (Coding)
• Media Literacy 3.4

SET-UP

Before class, check out this video explanation of the project. Have students
log onto computers and open their Scratch accounts. Hand back the Game
Design Documents from Activity 3.

INSTRUCTIONS

SUMMARY
Your students will be using the Game Design Documents they completed
in Activity 3 to make their own game in Scratch. They can make a custom
version of one of the games you made together (recommended) or make
their own game.

1. Explain challenge to students. “You will be using the Game Design
Documents you made last time to create your games in Scratch.”

2. Review the final project instructions on the back of the student
worksheets (Final Project Worksheet). It outlines the goal of the
project and what elements should be included in their code.

MATERIALS

Each student will need:

• Laptop or tablet

• Scratch account

• Game Design Document
from Activity 3

http://niiexplore.ca
mailto:explore%40nii.ca?subject=
https://www.youtube.com/watch?v=L3D2-Omm508

View links and download digital materials at niiexplore.ca 8.45

3. Students can open their previous games by
clicking on the file folder in Scratch. If students
want to view NII Explore’s version of the games on
their computers, they can search “NIIExplore2”
on Scratch and access our shared files. Remind
students that it is okay to look at code from another
game, but they shouldn’t copy someone else’s
game exactly. They need to make it their own.

4. Give students lots of time to work on their games.
Remind them to rename their projects and save
their work often. Scratch will save their work
automatically as long as they are logged into their
account. If they lose their work at any point, they
can try CTRL+Z to undo the most recent action, or
go to “Edit” then “Restore”.

5. If students need more time, consider giving them
another computer period.

6. PROJECT SUBMISSION When students are
finished, they will share their projects with you.
Be sure to save about 15 minutes for this process.
First, they will click the orange “Share” button.
Next, have them fill in the “Instructions” box
that appears. Finally, they will click “Copy Link”
and send the link to you via email or your online
classroom (e.g., Brightspace or Google Classroom).

7. After submitting their Scratch projects, ask
students to complete the written questions on
their worksheet and hand them in. You may use
the ASSESSMENT FRAMEWORK on Page 8.47 to
evaluate your students’ work.

8. If you haven’t already, try the classroom activities
with your class. They are meant as a fun way to
reinforce coding ideas without needing computers.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.46

FINAL PROJECT

Assessment and evaluation
When students have sent you their Scratch projects, you will be able to try their game by clicking the green flag.
Next, you can click “See Inside” to view their code. Check that the students used the following elements in their
game as outlined on their worksheets:

 A player-controlled sprite
As the game’s player, is there a sprite that you can control? How do you control the sprite?

At least 2 variables (e.g., score, timer, speed, etc.)
Click on the “Variables” tab on the left. Do they have at least two orange variables?
What are they?

 A subprogram (or “My Block”)
Click on the “My Blocks” tab on the left. Have they created a pink My Block? What does it do?
Where does it appear in their main program?

At least 2 types of motion, including a change of x and y coordinates
Does a sprite undergo different types of transformation (e.g., rotation, reflection, translations,
growing/shrinking)? Does the student show an understanding of xy-coordinates on the
Cartesian plane?

 A conditional statement (if-then or if-else-then)
Has the student included a light orange conditional statement? What does it control?

 An ending (e.g., “You Win” or “Game Over” message)
How does the game reach an end? What happens when the end is reached?

Students will probably use more elements than the ones listed above, but these are the ones specified
on their worksheets.

Read through both their code and their worksheet responses, then use the ASSESSMENT FRAMEWORK
on the next page to evaluate their work.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.47

Assessment framework
This chart will help you assess your students’ work during the Final Project and the Coding in the Classroom
program as a whole. It is based on the Ontario Mathematics (2020) curriculum.

KNOWLEDGE AND UNDERSTANDING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Knowledge of
content

Correctly uses few
required elements in
final code
Does not answer
questions during
online classes, even
with assistance

Correctly uses most
required elements in
final code
Answers questions
during online classes
with some assistance

Correctly uses all
required elements in
final code
Answers some
questions during
online classes

Correctly uses all
required elements and
some others in final
code
Answers many
questions during
online classes

Understanding of
content

Rarely uses variables
and data structures
(e.g., lists) when
appropriate
Rarely looks for ways
to make code more
efficient

Sometimes uses
variables and data
structures (e.g., lists)
when appropriate
Sometimes looks for
ways to make code
more efficient

Often uses variables
and data structures
(e.g., lists) when
appropriate
Often looks for ways
to make code more
efficient

Always uses variables
and data structures
(e.g., lists) when
appropriate
Always looks for ways
to make code more
efficient

THINKING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Use of planning
skills

Creates Game Design
Document with few of
the required elements

Creates Game Design
Document with
some of the required
elements

Creates Game Design
Document with
most of the required
elements

Creates Game Design
Document with all of
the required elements

Use of processing
skills

Uses code to convert
Game Design
Document into
finished game with
limited effectiveness

Uses code to convert
Game Design
Document into
finished game with
some effectiveness

Uses code to
convert Game
Design Document
into finished game
with considerable
effectiveness

Uses code to
convert Game
Design Document
into finished game
with high degree of
effectiveness

Use of critical/
creative thinking
processes

Troubleshoots and
“debugs” code with
much assistance
Re-creates one of the
example games

Troubleshoots and
“debugs” code with
assistance
Creates new game by
modifying existing
features

Troubleshoots and
“debugs” code with
some assistance
Creates game with a
new feature

Troubleshoots and
“debugs” code with
little assistance
Creates game with
several new features

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.48

COMMUNICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Expression and
organization of ideas
and information in
oral, visual, and/or
written forms

Uses some concept art
or written descriptions

Game Design
Document is not
clearly organized

Uses concept art or
written descriptions
to create somewhat
organized Game
Design Document

Uses concept art and
written descriptions
to create organized
Game Design
Document

Uses concept art and
written descriptions
to create highly
organized Game
Design Document

Communication for
different audiences
and purposes in oral,
visual, and/or written
forms

Explains code and
gameplay, either orally
or in writing, with
limited effectiveness

Explains code
and gameplay,
either orally or in
writing, with some
effectiveness

Explains code and
gameplay, either
orally or in writing,
with considerable
effectiveness

Explains code and
gameplay, either
orally or in writing,
with a high degree of
effectiveness

APPLICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Application of
knowledge and skills
in familiar contexts

Follows coding lessons
with much assistance

Follows coding
lessons with
assistance

Follows coding
lessons with some
assistance

Follows coding lessons
with little or no
assistance

Application of
knowledge and skills
to new contexts

Applies coding
knowledge to make
custom game with
much assistance

Applies coding
knowledge to make
custom game with
assistance

Applies coding
knowledge to make
custom game with
some assistance

Applies coding
knowledge to make
custom game with
little or no assistance

Making connections
within and between
various contexts

Rarely participates
in classroom coding
activities

Rarely makes
connections between
coding concepts and
everyday life

Participates
somewhat in
classroom coding
activities

Sometimes makes
connections between
coding concepts and
everyday life

Participates in
classroom coding
activities

Makes connections
between coding
concepts and
everyday life

Participates fully in
classroom coding
activities

Often makes
connections between
coding concepts and
everyday life

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 8.49

Additional
resources
SCRATCH

Scratch has a series of activity guides under the “Ideas” tab. There are
also countless tutorials available on YouTube.

scratch.mit.edu/ideas

CANADA LEARNING CODE

From lesson plans to professional development, this website has a wealth
of resources for teaching coding.

canadalearningcode.ca

BLOCKLY GAMES

These coding games cover a range of topics. Blockly offers a mix of
block-based and text-based coding. The later levels of some lessons are quite
tricky, but the first few levels should be accessible for Grade 8 students.

blockly.games

*Coding screenshots are sourced from scratch.mit.edu/

Scratch

Canada Learning Code

Blockly Games

http://niiexplore.ca
https://scratch.mit.edu/ideas
https://www.canadalearningcode.ca/
https://blockly.games/

