
View links and download digital materials at niiexplore.ca 6. 1

Creating
efficient code
Welcome to NII Explore’s Coding in the Classroom program for Grade 6
students. During the 4-week program, you and your class will complete:

•	 3 online lessons
•	 3 offline activities
•	 A final coding project

This teacher guide includes everything you need to get started!

THE GRADE 6 CODING CURRICULUM

As of 2020, Ontario’s math curriculum includes coding expectations. Put
simply, coding is when we write instructions, or “code”, for a computer to
follow. There are two core expectations that run through every grade level
of the coding curriculum.

1.	 Writing and executing code

2.	 Reading and altering existing code

Each grade level introduces students to a new coding skill. Students
can practice this new skill while also using the skills learned in previous
grades. In Grades 1 to 4, students learn how to use four types of events –
sequential, concurrent, repeating, and nested events.

In Grade 5, students are introduced to two main types of control structure
– conditional statements and loops.

The GRADE 6 curriculum is focused on efficient code. Efficiency is about
solving problems using the simplest code possible. Every time a computer
executes a line of code, it takes time and energy. If we write shorter, more
efficient code, our programs will run faster and require less computing
power.

There are many techniques that can make our code more efficient,
but we will focus on these three.

GRADE 6 TEACHERS’ GUIDE

SCHEDULE AT A GLANCE

WEEK 1
•	 Online Lesson 1

Intro to Scratch
•	 Offline Activity 1

Conditional Rock-Paper-
Scissors

WEEK 2
•	 Online Lesson 2

Make an Efficient Scratch
Game

•	 Offline Activity 2
Mystery Drawings

WEEK 3
•	 Online Lesson 3

Dance Battle
•	 Offline Activity 3

Animation Storyboarding

WEEK 4
•	 Final Project

Make Your Own Animated
Short

GRADE 6 GRADE 7GRADE 5
Conditional
Statements Efficient Code Subprograms

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 2

1. Use loops

Loops make our code shorter by allowing us to repeat
steps, rather than having to rewrite the same code
multiple times. In this example, you can see that the
code with a loop is much shorter than the one without.

Loop example. Both of these algorithms solve the
maze, but the first solution requires 9 lines of code
while the version with a loop uses only 4.

2. Use the right conditional statements

Efficiency is about minimizing the number of
calculations that the computer needs to make. Let’s say
you’ve coded a game in which the player needs to score
50 or more points to win. You could evaluate the results
using three “if-then” statements like this:

This code solves the problem, but the computer has to
perform three separate calculations. It calculates if the
score is greater than 50, then calculates if it is equal to
50, and finally calculates if it is less than 50.
We can replace this code with a single “if-else”
statement. Here’s how:

In this algorithm, the computer only needs to perform a
single calculation – it checks if the score is greater than
49. If the statement is true, then the player wins. If it’s
not, the player loses.

This second version could run up to three times
faster than the first example and use one-third of the
computing power.

3. Put the code in the right order

The order of your code determines what your program
will do, but it also affects your program’s efficiency.

Consider this game made in Scratch. The cat chases the
basketball and scores a point every time it touches the
ball.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 3

When the player reaches 10 points, the cat will say
“You Win!”. The program needs an “if-then” block to
check if the score is equal to 10. The algorithms below
show two places where we could put that conditional
statement, but one is much more efficient than the
other. Can you figure out which one?

Option B is more efficient. In Option A, the “if-then”
statement is right after the “forever” loop, which
means that the computer will be checking the score
constantly. In Option B, the check score statement
comes immediately after changing the score. The
computer only needs to check the score after a point is
scored.

Most programs at a Grade 6 level will be small enough
that efficiency isn’t a big problem, but it’s important to
build good habits and develop problem solving skills.
In the long run, efficient code will save us time, money,
and energy.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 4

PROGRAM SCHEDULE
The Coding in the Classroom program will last four weeks.
Here is a detailed guide of what you will be doing each week.

BEFORE WEEK 1

Read through this teacher guide, including the instructions for the three
online lessons. If you have time, you may want to try the online activities
for yourself.

Make sure your class has access to devices (laptops or tablets) for each of
the online lessons. Your class will also need devices for the final project.

WEEK 1

Online Lesson 1 – Intro to Scratch

This lesson introduces students to Scratch, an online coding platform.
Students will use some of the basic control structures to make their own
“clicker” game.

PREP Log onto computers and open Scratch. Ask students to “Join
Scratch” and make an account using their school email address.

POST Complete “Offline Activity 1 – Conditional Rock-Paper-Scissors”
before next online session.

See Page 6.6 for lesson instructions and Page 6.11 for a
quick reference guide.

Offline Activity 1 – Conditional Rock-Paper-Scissors

Your class will practice using and interpreting conditional statements
with a fun, rock-paper-scissors tournament.

See Page 6.15 for activity instructions.

WEEK 2

Online Lesson 2 – Make an Efficient Scratch Game

In this activity, students will edit an incomplete Scratch file to make a
working game. Students will learn techniques to make their code more
efficient.

PREP Have students log into their Scratch accounts and open the
activity link.

Week 1 Conditional
Rock-Paper-Scissors

Week 2 Mystery Drawings

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 5

POST Complete “Offline Activity 2 – Mystery Drawings” before next
online session.

See Page 6.20 for lesson instructions and Page 6.24 for a
quick reference guide.

Offline Activity 2 – Mystery Drawings

Your students will practice writing and editing efficient instructions with
this drawing activity.

See Page 6.29 for activity instructions.

WEEK 3

Online Lesson 3 – Dance Battle

Students will use control structures to create a “dance battle” animation.
Students will learn how to use custom “My Blocks” in Scratch.

PREP Have students log into their Scratch accounts and open the
activity link.

POST Complete “Offline Activity 3 – Animation Storyboarding” and the
Final Project.

See Page 6.37 for lesson instructions and Page 6.41 for
a quick reference guide.

Offline Activity 3 – Animation Storyboarding

Students will prepare for their final coding project by planning out their
animated story.

See Page 6.45 for activity instructions.

WEEK 4

Final Project – Make Your Own Animated Short

Students will apply their learning to make their own animated short film
in Scratch. When they’re finished, they will share their projects for you to
evaluate.

See Page 6.49 for project instructions.

AFTER WEEK 4

Keep the coding going with the additional resources on Page 6.54!

Week 3 Animation Storyboarding

Week 4 Final Project

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 6

ONLINE LESSON 1

Intro to Scratch
(Clicker Game)
60 MINUTES

The three online lessons and final project all use Scratch. If you are new to
Scratch, you may want to check out their “Getting Started” tutorial.

In this lesson, you will introduce students to Scratch and have them make
their own accounts. The goal is to familiarize students with Scratch and
some of its basic commands. Along the way, students will use motions,
control structures (i.e., loops and conditional statements), and variables
to make a simple clicker game.

CURRICULUM CONNECTIONS

CODING

•	 Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing efficient code,
including code that involves conditional statements and other control
structures

•	 Math C3.2 – read and alter existing code that involves conditional
statements and other control structures, and describe how changes
to the code affect the outcomes and the efficiency of the code

NUMBER SENSE

•	 Math B1.3 – compare and order integers, decimal numbers, and
fractions, separately and in combination, in various contexts

QUICK LINKS

Student Activity Link
scratch.mit.edu

Finished Example
scratch.mit.edu/
projects/818521222

PowerPoint
Grade 6 – Week 1 –
Clicker Game

Quick Reference
Intro to Scratch (Clicker
Game) – Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/ideas
https://scratch.mit.edu/
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818521222
https://scratch.mit.edu/projects/818521222
https://scratch.mit.ed
u/projects/671140197
https://scratch.mit.edu/projects/759070219
https://scratch.mit.edu/projects/759070219

View links and download digital materials at niiexplore.ca 6. 7

LESSON BREAKDOWN

SLIDE 1 - SET UP AND INTRODUCTION

Open the PowerPoint slides and Scratch on your own
computer. Project for the students to see. Open or print
the Intro to Scratch (Clicker Game) - Quick Reference
for your own use during the lesson.

SLIDE 2 - WHAT IS CODING?

Check if your students have coding experience and if
they’ve used Scratch before. Ask them what coding
means. “Coding is when we give instructions to a
computer.”

SLIDE 3 AND 4 - WHAT TO EXPECT

Your class will complete three online lessons (using
Scratch), three offline activities, and a final project
(make their own animation).

If your students make an animation that they are
particularly proud of, please share it with us at
explore@nii.ca. NII Explore periodically awards prizes
to some of our favourite coding projects!

SLIDE 5 - READY TO START

Have students open the student activity link on their
devices. It should take them to the Scratch home page.

MAKING SCRATCH ACCOUNTS

Start the first week by having all the students make
Scratch accounts. This will let them save their projects
and access them at home or on another day. It may
take a few minutes but will be worthwhile in the long
run.

Click “Join Scratch” in the top right. Create a username
and password. Have students choose a username that
will be easy for them to remember. For their password,
they should choose something that is hard to guess.
As an added measure, encourage them to write down
their login credentials in a safe place.

It is not the best practice from a security standpoint,
but for simplicity, they could use the same password
that they use to log into their computers.

If their username is taken, have them add numbers at
the end of it.

They do not need to give out their personal details
other than an email address. Have them use their
school email address.

If students already have Scratch accounts, they can log
into them to start.

DEMO

Show a basic clicker game to give students an idea of
what they are working towards. You can make your own
game or use this one.

Sample game:
scratch.mit.edu/projects/818521222

You can make the game full screen by clicking the four
arrows icon. Click the green flag to start the game. Click
the moving dog until you reach 10 points.

TOUR OF SCRATCH

NOTE: If students have used Scratch before, you can
speed through this part.

Have students create a new project then give them a
tour of Scratch. Show them where the coding window
and preview window are, and where they can access
blocks for their code. See Page 6.12 for more details.

http://niiexplore.ca
mailto:explore%40nii.ca?subject=
https://scratch.mit.edu/projects/818521222

View links and download digital materials at niiexplore.ca 6. 8

CHOOSING A SPRITE AND BACKDROP

Have students choose a backdrop (bottom right
corner).

Have students delete the default cat sprite (garbage can
beside the sprite icon in the bottom right) and pick a
new sprite (blue cat button in bottom right).

Ask students to share which backdrop and sprite they
picked so you know when they’re ready to move on.

CREATE SCORE VARIABLE

We want to be able to keep score in our game. The
score is something that can change or “vary” which
is why we call it a variable. We use variables to store
single pieces of data.

Go to Variables and then “Make a Variable”. Name it
“Score”.

You can also delete the default “my variable” by right-
clicking on it and choosing “delete”.

INITIALIZE SCORE - STEP 1 IN QUICK REFERENCE

Ask students “What should the score be when we start
a new game?” (Zero).

Add “when green flag clicked” to begin the program.

Then add “set Score to 0” right after the green
flag block [Step 1].

Now the score will be reset to 0 whenever you click the
green flag to start a new game.

SCORING POINTS - STEP 2 IN QUICK REFERENCE

Add “when this sprite clicked” then “change Score
by 1” [Step 2].

The score will go up by 1 every time the target sprite
is clicked.

TEST THE GAME

Have the students test the game – does the score go
up? Does it reset to 0 when you start a new game?

When everyone is ready, run a friendly competition
with the students. See who can get the most clicks in 10
seconds. Ask them to share their scores.

MOVING SPRITE - STEP 3 IN QUICK REFERENCE

To make the game harder, let’s make the sprite move
around the screen.

Under the green flag section, add a “forever” loop
(found in Control) then put “go to random position”
(found in Motions) inside the loop [Step 3a].

Have students test the game and see what happens.
The sprite moves way too fast, but students find it
funny.

SLOWING DOWN - STEP 3 CONTINUED

ASK: How can we make the sprite go slower?

HINT: Check out the options in Control.

Answer: Add “wait 1 seconds” after “go to random
position” [Step 3b].

TEST AGAIN
Run another friendly competition to let the students
test their games.

Testing the games regularly helps keep the students
engaged, but it’s also good practice to test code often
to spot mistakes early.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 9

SETTING TIMER - STEP 4 IN QUICK REFERENCE

We don’t want our games to go on forever, so we will
need to set a target score. The game should end when
the player reaches this score (the target was 10 in the
example we saw at the start of class).

To check the score, create a conditional statement as
follows: if (Score variable) = 10 then → hide → stop all
[Step 4a].

Ask the students: Where should we put this conditional
statement? When does it make sense to check the
score? (After scoring a point) Add the conditional
statement under “change Score by 1”.

Now the target sprite will disappear and stop moving
when the target score is reached. To make the sprite
appear again for a new game, add “show” at the start
of the program after the green flag [Step 4b].

TEST

Have students do another test.

ASK: Why do you think we chose 10 as the target score
for testing? (So that testing doesn’t take too long. We
can raise the target score after we know that the game
works.)

OPTIONAL - ADD A “YOU WIN” MESSAGE
[STEP 5 IN QUICK REFERENCE]

If time allows, students can add a “You Win” pop-up
message when they reach the target score.

Create the sprite

First, we need to create a new sprite that says: “You
Win” (or something similar). Hover over “Choose a
Sprite” but choose the paintbrush instead of a sprite.
Use the “T” to add text. Type a victory message like

“Good Game” or “You Win”. Students can customize
it by changing the colour, size, font, or by drawing in
confetti [Step 5].

Drag the sprite to the desired position on the screen.

OPTIONAL - BROADCAST MESSAGES
STEP 6 IN QUICK REFERENCE

Now that we’ve made the “You Win” sprite, we need
to tell it when to appear. In Scratch, we use broadcast
messages to send invisible signals between sprites. The
moving sprite will be sending a secret message to the
“You Win” pop-up sprite.

Sending the message

In the moving sprite’s code, add broadcast
(message 1) to the if-then statement before the stop
all command. Rename the message as “winner” or
something similar.

NOTE: This doesn’t mean that the word “winner”
will show up in our game – this name just helps us
remember what the broadcast message does.

Receiving the message

Move over to the “You Win” sprite’s code. You can
toggle between sprites by clicking on the sprite name
and icon near the bottom right of the screen. Add
“when I receive (winner) → show” [Step 6b].

ASK STUDENTS: What’s the last thing we need to add
here? What should happen to this sprite when the game
starts? (It should hide).

Add “when green flag clicked → hide” to the winner
sprite [Step 6c].

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 10

FINAL TEST

Give students time to play through their games, try
each other’s games, or share with you and the rest of
the class.

OPTIONAL ADD-ONS

Suggest some extra things students could add to
their games.

•	 Change target score: What should the game go to?

•	 Change sprite size: Sprite gets smaller each time it’s
clicked or just starts and stays smaller

•	 Change game speed: Make the wait time shorter or
longer

•	 Add sound effects: Make a sound every time the
sprite is clicked (NOTE: This could quickly get
annoying)

•	 Make sprite “pulse” when it gets clicked by setting
size to 110%, waiting 0.05 seconds then returning
to 100% size

SLIDE 6 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they learned. “We used
two types of control structure: loops and conditional
statements. What does each one do?” (Loops make
sections of code repeat. Conditional statements allow
us to control (or select) what happens and when.)

See slide notes for more discussion points.

SLIDE 7 - POEM OF THE DAY

Each slideshow ends with a Poem of the Day to recap
the lesson. Introduce the concept of the Poem of the
Day then read the poem together.

SLIDE 8 - WHAT’S NEXT?

Let students know when you will be coding again. We
recommend alternating between the online lessons
and the offline activities. It requires less screen time for
your class and will give students more time to absorb
the new information.

Quickly preview what you will be doing next week. You
will be making a new game, this time with a focus on
efficiency.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 11

QUICK REFERENCE

Intro to Scratch
(Clicker Game)
After making Scratch accounts, you will show students some basic
commands. The goal is to familiarize students with Scratch and block-
based coding. By the end of the class, each student will have made a
simple clicker game.

SET UP

•	 Have students open Scratch and either create a new account
or log into an existing one

•	 Open Scratch on your own computer and create a blank project.
Open the finished example in a second tab.

QUICK LINKS

Student Activity Link
scratch.mit.edu/

Finished Example
scratch.mit.edu/
projects/818521222

http://niiexplore.ca
https://scratch.mit.edu/
https://scratch.mit.edu/projects/818521222
https://scratch.mit.edu/projects/818521222
https://scratch.mit.edu/projects/671140197

View links and download digital materials at niiexplore.ca 6. 12

Switch between
code and costumes

Coding block
categories

Choose a coding
block

Coding
 window

List of
sprites

Sprite
properties

Choose a
sprite

Choose a
backdrop

Rename project

Which sprite am
I editing?

Start/stop
program Preview

window
Show project

full screen

SCRATCH TOUR

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 13

THE CODE

Sprite #1 – Moving Sprite

Step 1. Initialization – When the game
starts (green flag), the score is set to 0.

Step 4b. Add a show block to make
the sprite reappear at the start of a
new game.

Step 3a. The sprite goes to a random
position and repeats that action forever.

Step 3b. Waiting 1 second before moving
again makes the game more playable.

Step 2. The score will go up by 1
every time the sprite is clicked.

Step 4a. Each time a point is scored,
the program checks if the score is equal
to the target score (in this case 10). If
it is, target sprite hides and stops all
code. Without the stop command, the
forever loop will keep running (i.e., the
sprite will disappear but keep moving
invisibly).

NOTE: Students might change the
scoring increment or target score such
that the target is never reached. For
example, they might make the score go
up by 2 each time while the target is an
odd number. They can fix this with a >
sign instead of an = sign.

Step 6a. To cue the Winner sprite, add
a broadcast message after the target
score is reached.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 14

Sprite #2 – Winner Sprite

Sprite #2 – Creating the Winner Sprite

Step 5. Hover over the “Choose a Sprite” icon then choose the
Paintbrush option.

Select “T” for Text and type a message in the editing window.

Choose the arrow (“Select”) to drag a corner of the text box and make it
bigger. You can also double click on the text box to change the fill colour
and font.

In the preview window, drag the sprite where you want it to appear.

Sprite 6c. Sprite hides when the game
starts.

Step 6b. Sprite appears when it
receives the winner broadcast
message.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 15

OFFLINE ACTIVITY 1

Conditional
rock-paper-scissors
30 – 45 MINUTES

Practice evaluating conditional statements while engaging in some
friendly competition!

LEARNING OBJECTIVES

•		 Evaluate and execute “If-Else” conditional statements

CURRICULUM CONNECTIONS

•	 Math C3.1 & C3.2 (Coding)

SET-UP

Procure popsicle sticks or some other objects to use as counters. Print and
cut out “If-Else” cards found on Pages 6.17 to 6.19. You will need 1 card
per student.

INSTRUCTIONS

SUMMARY
Students will follow the conditional statements on their “If-Else” cards to
play several games of rock-paper-scissors. They will use the popsicle sticks
to track their wins and losses.

1. 	 Ask students to recall what they learned about conditional statements
in the online class or in previous grades.

2. 	 Explain the premise of today’s activity. SAY “We are going to play a
rock-paper-scissors tournament, but instead of picking your moves,
you’ll each get a conditional statement that will tell you what to do.”

3. 	 Show an “If-Else” card and demonstrate how you would read it. For
example, the card might say “IF your opponent has a pet THEN play
rock ELSE play scissors”. You would start by asking your opponent if
they have a pet. If they do, then you will play rock in your game. If they
don’t, you will play scissors.

MATERIALS

Each student will need:

•	 3 popsicle sticks or some
other small markers
(e.g. pencils)

•	 1 “If-Else” card

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 16

4. 	 Pick a volunteer and give them an “If-Else” card.
Play an example game against them.

5. 	 Hand out 3 popsicle sticks and 1 “If-Else” card to
each student. Give students a chance to read their
card.

6. 	 Have each student find a partner and play a
practice match against them. Circle the room
and check if students are having any trouble
understanding their “If-Else” card.

7. 	 Start the tournament. Students will move around
the room playing a single game against different
opponents. They will always choose their move
based on their “If-Else” card. The loser gives one of
their popsicle sticks to the winner. If it’s a tie, both
players keep their sticks and trade their “If-Else”
cards. When a student runs out of sticks, they
are out of the round and can play against other
eliminated students for fun.

8. 	 After several minutes, check which students have
the most popsicle sticks.

9. 	 Have students trade “If-Else” cards and redistribute
the popsicle sticks so everyone has three sticks
again. Play another round to give students practice
evaluating their new conditional statement.

10. 	Play as many rounds as time allows, leaving a few
minutes for a debrief discussion at the end.

DISCUSSION QUESTIONS

What are the key words that help you recognize a
conditional statement?

Answer: If, then, else.

What was your conditional statement and how did
you test if it was true or false?

Answers will vary.

Why do you think the conditional statements were
always about your opponent and not about yourself?

Answer: If the statement was about yourself, the answer
would always be the same (e.g., you either have a pet or
you don’t) and we wouldn’t really need to set conditions.
Your opponent changes every time so you always have to
re-check if the statement is true or false.

We use conditional statements in our everyday lives,
like “IF it’s raining THEN bring an umbrella”. What are
some other examples you can think of?

Possible answers: IF hungry THEN have something to
eat; IF it’s recess time and sunny THEN go outside ELSE
stay inside; IF tired or after 9 THEN go to bed; IF shoes
are untied THEN tie them; IF someone sneezes THEN say
“Bless you”.

http://niiexplore.ca

niiexplore.ca 6.17

IF ELSE cards (Page 1 of 3)

OFFLINE ACTIVITY 1

your opponent is
older than you

choose PAPER

choose ROCK

IF

THEN

ELSE

your opponent’s
name starts with a
letter from A to K

choose ROCK

choose SCISSORS

IF

THEN

ELSE

your opponent’s
name starts with a
letter from L to Z

choose SCISSORS

choose PAPER

IF

THEN

ELSE

your opponent
has a summer or
winter birthday

choose ROCK

choose PAPER

IF

THEN

ELSE

your opponent
has a spring or
fall birthday

choose SCISSORS

choose ROCK

IF

THEN

ELSE

your opponent
has a pet

choose PAPER

choose SCISSORS

IF

THEN

ELSE

your opponent is
younger than you

choose PAPER

choose ROCK

IF

THEN

ELSE

your opponent
has a sister

choose ROCK

choose SCISSORS

IF

THEN

ELSE

http://niiexplore.ca

niiexplore.ca 6.18

IF ELSE cards (Page 2 of 3)

OFFLINE ACTIVITY 1

your opponent
has a brother

choose SCISSORS

choose PAPER

IF

THEN

ELSE

your opponent
can whistle

choose ROCK

choose PAPER

IF

THEN

ELSE

your opponent
likes to code

choose SCISSORS

choose ROCK

IF

THEN

ELSE

your opponent is
wearing green or
red

choose PAPER

choose SCISSORS

IF

THEN

ELSE

your opponent is
wearing blue or
pink

choose PAPER

choose ROCK

IF

THEN

ELSE

your opponent’s
favourite number
is greater than 10

choose ROCK

choose SCISSORS

IF

THEN

ELSE

your opponent’s
favourite number
is less than 10

choose SCISSORS

choose PAPER

IF

THEN

ELSE

your opponent’s
favourite ice cream
is chocolate

choose ROCK

choose PAPER

IF

THEN

ELSE

http://niiexplore.ca

niiexplore.ca 6.19

IF ELSE cards (Page 3 of 3)

OFFLINE ACTIVITY 1

your opponent’s
name has 6 or
more letters

choose SCISSORS

choose ROCK

IF

THEN

ELSE

your opponent’s
name has less
than 6 letters

choose PAPER

choose SCISSORS

IF

THEN

ELSE

your opponent
takes the bus to
school

choose PAPER

choose ROCK

IF

THEN

ELSE

your opponent
likes pineapple
on pizza

choose ROCK

choose SCISSORS

IF

THEN

ELSE

your opponent’s
favourite class is
math or gym

choose SCISSORS

choose PAPER

IF

THEN

ELSE

your opponent’s
favourite class is
science or art

choose ROCK

choose PAPER

IF

THEN

ELSE

your opponent
has been in your
class before

choose SCISSORS

choose ROCK

IF

THEN

ELSE

your opponent
sits on the same
side of the class
as you

choose PAPER

choose SCISSORS

IF

THEN

ELSE

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 20

ONLINE LESSON 2

Make an efficient
game
In this lesson, students will be editing an existing Scratch file to make a
catcher game. The game will include one sprite that moves horizontally
along the bottom of the screen (catcher sprite) and a second sprite that
repeatedly falls from the sky (falling sprite). Students will need to modify
the code to make the game work and to make the program more efficient.

CURRICULUM CONNECTIONS

CODING

•	 Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing efficient code,
including code that involves conditional statements and other control
structures

•	 Math C3.2 – read and alter existing code that involves conditional
statements and other control structures, and describe how changes to
the code affect the outcomes and the efficiency of the code

NUMBER SENSE

•	 Math B1.3 – compare and order integers, decimal numbers, and
fractions, separately and in combination, in various contexts

GEOMETRIC AND SPATIAL REASONING

•	 Math E1.3 – plot and read coordinates in all four quadrants of a
Cartesian plane, and describe the translations that move a point from
one coordinate to another

•	 Math E1.4 – describe and perform combinations of translations,
reflections, and rotations up to 360° on a grid, and predict the results
of these transformations

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/723255564

Finished Example
scratch.mit.edu/
projects/818522286

PowerPoint
Grade 6 – Week 2 – Video
Games

Quick Reference
Make an Efficient Game
– Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/projects/723255564
https://scratch.mit.edu/projects/723255564
https://scratch.mit.edu/projects/818522286
https://scratch.mit.edu/projects/818522286

View links and download digital materials at niiexplore.ca 6. 21

LESSON BREAKDOWN

SET UP

Open the PowerPoint slides and the Scratch links on
your own computer. Project for the students to see.
Open or print the Make an Efficient Game – Quick
Reference for your own use during the lesson.

SLIDE 1 - WEEK 1 RECAP

Ask students to recall what they learned about in the
last online lesson.

SLIDES 2 TO 6 - HISTORY MINUTE

Use slides to discuss video games as an application
of coding. See slide notes for talking points.

DEMO

Show students what the completed catcher game looks
like to give them an idea of what they are working
towards.

Link to finished game:
scratch.mit.edu/projects/818522286

Use the left and right arrows to move the frog back and
forth. Try to catch the falling bugs until you reach the
target score.

LOG INTO SCRATCH

Have students log into their Scratch accounts and open
the activity link.

Have them click “Remix” to make their own version of
the project and change the title to something of their
choosing.

TEST THE GAME

Explain that their file is partially complete – they will
need to make changes to make their code work and to
make it more efficient.

Have students try the game to see what works and
what doesn’t (frog can only move to the right, bug
doesn’t fall).

ADD LEFT MOVEMENT - STEP 1 IN QUICK REFERENCE

Ask students to read the frog’s code and identify what
each part does. What part lets the frog move to the
right?

Answer: if right arrow pressed? then → change x by 10 →
point in direction 90

REMINDER: You can switch between sprites by
choosing the appropriate one in the bottom right box.
Make sure the frog is selected.

Based on the code for the right arrow, give students
time to figure out what should go in the conditional
statement for the left arrow. Let them try on their own
but give hints if needed.

Answer: if left arrow pressed? then → change x by -10
→ point in direction -90 [Step 1]

MAKE BUG FALL - STEP 2 IN QUICK REFERENCE

Switch to the bug sprite’s code. Have students read
through it and say what they think each line does
(Starts game, resets score to 0, moves bug to random
position at the top of the screen, i.e., y = 180).

NOTE: There is an unconnected section that begins
with “if Score = 10 then…”. Tell students that you will be
using that part later and to ignore it for now.

To make the bug fall, start by adding a forever loop to
the bottom of the existing code. Next, ask the students
what they could put inside the loop to make the bug fall
down the screen.

http://niiexplore.ca
https://scratch.mit.edu/projects/818522286
https://scratch.mit.edu/projects/723207102

View links and download digital materials at niiexplore.ca 6. 22

Answer: change y by -10 [Step 2].

Have students test that this works by hitting the green
flag. Common mistakes are mixing up x and y, or not
using a negative. This is a good opportunity to teach/
remind students about the Cartesian coordinate
system.

HAVE BUG RETURN TO THE TOP -
STEP 3 IN QUICK REFERENCE

ASK “What’s the problem?” (The sprite only falls once –
need to make it go back to the top and fall again).

We can do this using a conditional statement to check
when the bug passes below a certain point on the
screen. Add if y position < -170 then inside the forever
loop. Common mistakes are missing the negative sign
or using greater than instead of less than.

Next, we need to add instructions inside the conditional
statement to send the bug back to the top. Which two
blocks should we use? HINT: They are already part of
our code.

Answer: go to random position → set y to 180
[Step 3].

Now whenever the sprite falls below a certain point it
will move back to a random position at the top of the
screen.

 SCORING POINTS - STEP 4 IN QUICK REFERENCE

Next, we will start scoring points. A score variable has
been pre-made for the students, but they will need to
figure out when to use it.

Answer: Immediately after the first conditional
statement add if touching Frog then → change Score
by 1 → go to random position → set y to 180.

When the bug touches the frog the score will go up by 1
and the bug will return to a random position at the top
of the screen.

PLAY TEST

At this point, the students’ games should be playable.
Give them time to test it out and troubleshoot any
issues.

SET TARGET SCORE - STEP 5 IN QUICK REFERENCE

If we don’t want the game to go on forever, we will need
to set a target score.

Find the pre-written section of code that says if Score
= 10 then → broadcast winner → stop all. We will be
turning this entire section into a single block using a
subprogram (also called a function). Subprograms are
sections of code that perform a specific task. In this
case, our subprogram will check if the score is equal to
10 and send the winner message if it is.

To turn this into a subprogram, go to “My Blocks” then
“Make a Block”. Call this new block check score and
click OK. A pink block called define check score will
automatically appear in the coding window. Connect it
to the top of the “If Score = 10 then…” section [Step 5a].

Now we need to tell our program when to check the
score. Go to My Blocks and grab our new, pink check
score block. Ask students to figure out where in their
main program they should insert it. When is the best
time to check the score?

Answer: There are several places that would work, but
the most efficient spot is right after “change Score by 1”.
We only need to check the score after the score changes
[Step 5b].

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 23

PLAY TEST

The game should now be fully operational. Give
students some time to test it out. If students have
followed all the steps so far, a winner message has been
pre-programmed to appear when the target score is
reached.

If you are low on time, feel free to end the lesson here
and give students the remaining time to test each
other’s games. Otherwise, you can go on to the optional
next step.

OPTIONAL - MAKE “GO TO TOP” BLOCK -
STEP 6 IN QUICK REFERENCE

One way to make our code more efficient is by putting
steps in the ideal order. Another way is to eliminate
redundancy. Have students look through the bug’s
code – is there anything that shows up multiple times?
What? What does this code do?

Answer: go to random position → set y to 180; it
makes the sprite go to a random position at the top.

We can replace this repetitive code with a subprogram
or function. It makes our code easier to read and more
efficient to write.

Go to My Blocks then “Make a Block”. Title it “go to top”.
Under “define go to top” add “go to random position
→ set y to 180” [Step 6a].

Now we can replace those lines of code with the “go
to top” block whenever they appear in our main code
[Step 6b].

BONUS - CUSTOMIZE THE GAME

If time allows, you can give the students suggestions for
customizing their games.

Change backdrop

Game could switch to a new backdrop when a certain
score is reached.

Change sprites

Create the new sprite that you want to use then copy
over the code from your existing sprite to your new
sprite. You can copy code by dragging it to the new
sprite’s icon in the bottom right.

Change the game speed

Tweak the numbers to make the sprites (either frog or
bug) move either faster or slower.

Add a second falling sprite

Create a second sprite and make it worth more points.

SLIDE 7 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they learned. See slide
notes for possible discussion points.

SLIDE 8 - POEM OF THE DAY

Share this week’s poem as a recap.

SLIDE 9 - WHAT’S NEXT?

Quickly preview what you will be doing next week.
The students will use subprograms and repeat loops to
make a fun animation.

Try Offline Activity 2 – Mystery Drawings before
the next coding class.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 24

QUICK REFERENCE

Make an efficient
game
Students will be making a catcher game. The game includes a “catcher”
sprite that the player controls with the arrow keys and a “falling” sprite
that continuously falls from the top of the screen. Students will need to
modify the existing code to make the game work and to make their pro-
gram more efficient.

SET-UP
•	 Have students log into their Scratch accounts and open student link

•	 Open both the student version and the finished game on your
computer. You will demo the finished version then work from the
student version

THE CODE

The code for the three sprites (frog, bug, and winner message) is shown
below. Sections marked in GREY are pre-populated in the student version.
You will be adding the steps marked in PINK during the class. The step
numbers correspond with those in the lesson plan from Pages 6.21 to
6.23.

QUICK LINKS

Student Link
scratch.mit.edu/
projects/723255564

Finished Example
scratch.mit.edu/
projects/818522286

http://niiexplore.ca
https://scratch.mit.edu/projects/723255564
https://scratch.mit.edu/projects/723255564
https://scratch.mit.edu/projects/818522286
https://scratch.mit.edu/projects/818522286

View links and download digital materials at niiexplore.ca 6. 25

FROG SPRITE

Initializes sprite position and
orientation.

Moves the frog to the right
when the right arrow key is
pressed.

Step 1. Fill in this conditional
statement to make the frog
move left when the left arrow
is pressed.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 26

BUG SPRITE – MAIN PROGRAM

Sets the score to 0 at the start
of the game, moves bug to a
random position at the top of
the screen.

Step 2. Makes the sprite fall.
Code will repeat forever until
told to stop.

Step 3. If the sprite ever
reaches the bottom of
the screen (i.e., has a
y-coordinate less than
-170), then send the sprite
back to a random position
at the top of the screen.

Step 4. The player should
score a point any time the
bug touches the frog. The
bug will then go back to a
random position at the top.

Step 5b. Most efficient
location for the “check
score” block.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 27

BUG SPRITE – CHECK SCORE SUBPROGRAM

BUG SPRITE – “GO TO TOP” SUBPROGRAM

If the score variable is equal
to 10, a “winner” broadcast
message is sent and all code
stops.

Step 5a. Connect the “define
check score” block to the
pre-written code below.

Step 6a. Create and define a
custom “go to top” block.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 28

BUG SPRITE – MAIN PROGRAM WITH “GO TO TOP”

WINNER MESSAGE SPRITE

Sprite hides at the start of the game and only appears when the winner
broadcast message is received. This code is pre-written for the students.

Step 6b. Replace
redundant sections of
code with the new go to
top block.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 29

OFFLINE ACTIVITY 2

Mystery drawings
30 – 45 MINUTES

Your students will practice giving and following efficient instructions
with this fun, drawing activity.

LEARNING OBJECTIVES

•	 Write and execute instructions
•	 Follow and edit existing instructions
•	 Create 2D art works

CURRICULUM CONNECTIONS

•	 Math C3.1 & C3.2
•	 Arts D1

SET-UP

There are six versions of the worksheet, each with a different starting image.
The worksheets can be found on Pages 6.31 to 6.36. Print some of each for
your class. Each student will need a single sheet, not all six.

Students will also need a piece of paper and something to write
and draw with.

INSTRUCTIONS

1. 	 Ask students to recall what they learned in the online class.

2. 	 Explain the premise of today’s activity. “Today, we are going to do some
coding, but instead of writing instructions for a computer, we will write
instructions for each other.”

3. 	 Test the activity with your class. Without showing them the picture on the
right, give the students instructions on how to draw it. The catch? You can
only describe the shapes you’re drawing, not any specific things.

MATERIALS

Each student will need:

•	 1 worksheet

•	 Something to write with

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 30

	 Here’s what your “code” might be:

•	 Draw a medium-sized circle in the middle
of the page

•	 Draw a smaller circle above it and then an
even smaller one above that one

•	 Draw a rectangle above the smallest circle
	 and shade it in
•	 On each side of the middle circle, draw a

straight line pointing out at a 45° angle
•	 Add two short lines at the end of each of

those lines
•	 Draw two dots and an upside-down semi-circle

in the smallest circle

	 Have students follow along by drawing their
picture on a blank scrap of paper.

4. 	 When you’re done giving the instructions, have
your students share their drawings with each other.
DISCUSS Do they look the same? What do you think
my original picture was?

5. 	 Hand out the worksheets. Remind students that the
picture on their worksheet should be kept secret.
Make sure that students sitting near each other
have different images.

6. 	 Have students complete Box 1 on their worksheet.
They will be writing step by step instructions for
drawing their image.

7. 	 When they’re done writing instructions, have them
fold their paper on the first dotted line to hide the
original image, then pass their worksheet to the
next person.

8. 	 Students will use the instructions written in Box 1 to
draw a picture in Box 2. When everyone’s done, let
them unfold the paper and compare their drawing
to the original image.

9. 	 Based on their results from Step 8, students will
now change the code they received to make it more
concise and efficient. They will write their revised
code in Box 3. When they’re done, have them fold
their paper to hide the original image and drawing,
then pass their papers to a new person.

10. 	Students will now draw a picture in Box 4 using
the instructions from Box 3. When students are
finished, they can unfold their paper and compare
their drawing to the first drawing and the original
picture.

11. 	Allow the students to show their drawings to each
other and discuss the activity among themselves.

12. 	Wrap up the activity with a class discussion using
the suggested discussion questions as a guide.

DISCUSSION QUESTIONS

How did your picture change from the original image
to the final drawing?

What made the written instructions easy or hard to
follow?

What changes did you make when you edited
someone else’s code?

Was it easier to write the first instructions or edit
someone else’s?

How does giving instructions to a person compare to
writing computer code? Which one do you prefer?

Why should we practice giving instructions?

What’s a time in our life when we might need to
give someone instructions?

http://niiexplore.ca

niiexplore.ca 6.31

How do you draw the picture above?
Write your instructions here!

Write your new instructions here.
Can you make it shorter than the old
instructions?

Use the instructions from Box 1 to draw a
picture here. What do you think it is?

Use the instructions from Box 3 to draw a
picture here. What do you think it is?

VERSION A

1
NAME

NAME

2

3 4

NAME

NAME

Mystery
drawings

F O L D H E R E

F O L D H E R E

http://niiexplore.ca

niiexplore.ca 6.32

How do you draw the picture above?
Write your instructions here!

Write your new instructions here.
Can you make it shorter than the old
instructions?

Use the instructions from Box 1 to draw a
picture here. What do you think it is?

Use the instructions from Box 3 to draw a
picture here. What do you think it is?

VERSION B

1
NAME

NAME

2

3 4

NAME

NAME

Mystery
drawings

F O L D H E R E

F O L D H E R E

http://niiexplore.ca

niiexplore.ca 6.33

How do you draw the picture above?
Write your instructions here!

Write your new instructions here.
Can you make it shorter than the old
instructions?

Use the instructions from Box 1 to draw a
picture here. What do you think it is?

Use the instructions from Box 3 to draw a
picture here. What do you think it is?

VERSION C

1
NAME

NAME

2

3 4

NAME

NAME

Mystery
drawings

F O L D H E R E

F O L D H E R E

http://niiexplore.ca

niiexplore.ca 6.34

How do you draw the picture above?
Write your instructions here!

Write your new instructions here.
Can you make it shorter than the old
instructions?

Use the instructions from Box 1 to draw a
picture here. What do you think it is?

Use the instructions from Box 3 to draw a
picture here. What do you think it is?

VERSION D

1
NAME

NAME

2

3 4

NAME

NAME

Mystery
drawings

F O L D H E R E

F O L D H E R E

http://niiexplore.ca

niiexplore.ca 6.35

How do you draw the picture above?
Write your instructions here!

Write your new instructions here.
Can you make it shorter than the old
instructions?

Use the instructions from Box 1 to draw a
picture here. What do you think it is?

Use the instructions from Box 3 to draw a
picture here. What do you think it is?

VERSION E

1
NAME

NAME

2

3 4

NAME

NAME

Mystery
drawings

F O L D H E R E

F O L D H E R E

http://niiexplore.ca

niiexplore.ca 6.36

How do you draw the picture above?
Write your instructions here!

Write your new instructions here.
Can you make it shorter than the old
instructions?

Use the instructions from Box 1 to draw a
picture here. What do you think it is?

Use the instructions from Box 3 to draw a
picture here. What do you think it is?

VERSION F

1
NAME

NAME

2

3 4

NAME

NAME

Mystery
drawings

F O L D H E R E

F O L D H E R E

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 37

ONLINE LESSON 3

Dance battle
animation
60 MINUTES

Students will animate a “dance battle” between an existing sprite and
one that they make themselves. The lesson will cover repeat loops and
subprograms (also known as functions or “My Blocks”). After this lesson,
students will move on to the final project where they will create their own
animation from scratch.

CURRICULUM CONNECTIONS

CODING

•	 Math C3.1 – solve problems and create computational representations
of mathematical situations by writing and executing efficient code,
including code that involves conditional statements and other control
structures

•	 Math C3.2 – read and alter existing code that involves conditional
statements and other control structures, and describe how changes
to the code affect the outcomes and the efficiency of the code

GEOMETRIC AND SPATIAL REASONING

•	 Math E1.3 – plot and read coordinates in all four quadrants of a
Cartesian plane, and describe the translations that move a point from
one coordinate to another

•	 Math E1.4 – describe and perform combinations of translations,
reflections, and rotations up to 360° on a grid, and predict the results
of these transformations

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/743978955

Finished Example
scratch.mit.edu/
projects/818524309

PowerPoint
Grade 6 – Week 3 –
Animation and Final
Project

Quick Reference
Dance Battle Animation
– Quick Reference

http://niiexplore.ca
https://scratch.mit.edu/projects/743978955
https://scratch.mit.edu/projects/743978955
https://scratch.mit.edu/projects/818524309
https://scratch.mit.edu/projects/818524309
https://scratch.mit.edu/projects/724207614

View links and download digital materials at niiexplore.ca 6. 38

LESSON BREAKDOWN

SLIDE 1 - WEEKS 1 AND 2 RECAP

Open the PowerPoint slides and the Scratch links on
your own computer. Project for the students to see.
Open or print the Dance Battle Animation - Quick
Reference for your own use during the lesson.

Ask students to recall what you discussed in the
previous two lessons. What were the pink blocks
called? (My Blocks or subprograms or functions) Why
do we use them? (To make our code more organized
and more efficient)

SLIDES 2 TO 7 - HISTORY MINUTE

Use slides to discuss animation as an application of
coding. See slide notes for talking points.

FINISHED DEMO

Switch over to Scratch and show students what a
completed dance animation might look like to give
them an idea of what they are working towards.

Link to a finished animation:
scratch.mit.edu/projects/818524309

LOG INTO SCRATCH

Have students log into their Scratch accounts and
open the student activity link. Have them click “Remix”
to make their own version and then rename it to
something of their choosing.

FIRST DANCE - SHOW STARTING CODE

Have students click the green flag to see what the
existing program does (Anina talks to the student then
performs a short dance).

PICK BACKDROP

The default backdrop is the Boardwalk, but we can start
by picking a new one. Ask students to pick a backdrop –
where will your dance battle take place?

PICK A DANCING SPRITE

Students will now choose a sprite to compete against
Anina.

Go to “Choose a Sprite” and select the “Dance” filter
along the top bar. Students can pick any of the dancers
except Amon (he only has one pose or costume) and
Ballerina (doesn’t have many moves).

Ask students to share which sprite they picked.

NOTE: We will be switching back and forth between
Anina’s code and this new sprite’s code several times.
Remind students how to switch between sprites by
clicking the sprite icon near the bottom right corner
of the screen.

INITIALIZE THE NEW SPRITE - STEP 1 IN QUICK
REFERENCE

Set the initial size, position, direction, and costume
for the new sprite. Students can look at Anina’s
initialization code for reference.

It will look something like “when green flag clicked
→ set size to __% → go to x: __ y: ___ → point in
direction __ → switch costume to (starting costume)”
[Step 1].

http://niiexplore.ca
https://scratch.mit.edu/projects/818524309
https://scratch.mit.edu/projects/724207614

View links and download digital materials at niiexplore.ca 6. 39

CREATE FIRST DANCE ROUTINE - STEP 2 IN
QUICK REFERENCE

Switch back to Anina’s code and show the code for
“anina dance 1” (It is contained in a subprogram/My
Block). Explain that we will write a similar subprogram
for their own sprite.

Select their sprite and navigate to the Costumes tab
(top left corner).

“We can make a dance routine by switching through
the different costumes. Each costume represents a
different pose that this sprite can do. For our first
dance, we will just cycle through all the possible poses.”

Create a My Block called “dance 1”. A define dance 1
block will automatically appear.

Under define dance 1 add “repeat __ times → next
costume → wait 0.2 seconds” [Step 2a].

In the repeat block, they will fill in the number of
costumes that their sprite has. For example, Anina has
13 costumes, so her loop repeats 13 times. This code
will cycle through all their costumes.

Add a when I receive (your turn) block and then
attach the dance 1 custom block. Click on this section
of code to see what happens (The dance should play).
They may also choose to add a say block to their code.
Something like “Watch this, Anina!” [Step 2b].

TEST THE ANIMATION

Students are now ready to test everything they have
so far. Have them click the green flag to start Anina’s
script. When she’s done her dance, she will send the
“your turn” broadcast message telling the other sprite
to start.

SECOND DANCE ANINA - STEP 3 IN QUICK
REFERENCE

Switch back to Anina’s code. Scroll to the right to show
students that Anina has a second dance routine that is
pre-written and stored in another subprogram. They
can click on “define anina dance 2” to see what it does.

Have them add anina dance 2 (found in My Blocks) to
her main program after “anina dance 1” then click the
green flag to run the program [Step 3].

CREATE SECOND DANCE - STEP 4 IN QUICK
REFERENCE

Now students will create a second dance for their own
sprite. Switch back to their sprite’s code and have them
create a new block called dance 2. They will build a
new dance routine by defining their new block. For this
dance, they can use any combination of loops, costume
changes, and wait times. Look at Anina’s second dance
for reference [Step 4a].

They can test their dance routine as they go by clicking
on their dance 2 block. When they are finished, they
can add dance 2 to their main program under “dance 1”
[Step 4b]. Again, they can click the green flag to run the
entire animation.

SHARING TIME

As students finish, ask for volunteers to share what
they have so far.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 40

THIRD DANCE ANINA - STEP 5 IN QUICK REFERENCE

Switch back to Anina and scroll to the right again
to find Anina’s third dance. Click on it to show what
it does. Notice that this dance introduces other
graphic effects. Also point out that this subprogram
contains the “anina dance 1” subprogram. You can use
subprograms within other subprograms (i.e., nesting).
Add the “anina dance 3” block to her main program
under the other two dances [Step 5].

FINAL DANCE - STEP 6 IN QUICK REFERENCE

Now it’s time for the students to create a final dance for
their own sprite. Have them create a My Block called
“dance 3”. Encourage them to use any combination
of loops, costume changes, and wait commands plus
at least one graphic effect (found in Looks) or some
other kind of movement. They can also use one of their
existing My Blocks inside this new one [Step 6a].

When done, they can add their dance subprogram into
their main program [Step 6b] and watch the entire
animation. They can also mix and match their three
dance subprograms.

SLIDE 8 - RECAP

With about 5 minutes left in the class, switch back to
the PowerPoint slides.

Ask students to recall what they’ve learned about so
far. Some possible topics include: control structures
(loops and conditional statements), subprograms (My
Blocks or functions), Motion and Looks, or efficiency.
See slide notes for additional information.

SLIDES 9 AND 10 - FINAL PROJECT PREVIEW

Use the slides to explain the final project.

“You will be applying everything we’ve talked about to
make your own animation. You can keep working on
the one we made today and make it even better, or you
can create something new.”

“We will start by making something called a
storyboard. Then we will make your story come to life
using Scratch.”

You can show this animation as an example:
scratch.mit.edu/projects/819337693

NOTE: Student projects are not expected to be this long
or detailed.

When students are done, they will share their work for
you to evaluate.

As a bonus, NII Explore is always accepting submissions
to our “Scratch Film Festival” contest. Email your
students’ projects to explore@nii.ca - we hand
out prizes periodically for some of our favourite
animations!

SLIDE 11 - POEM OF THE DAY

Share the final Poem of the Day.

SLIDE 12 - WHAT’S NEXT?

Complete the final project in the next couple weeks
while this lesson is still fresh. If you haven’t already, try
out the offline activities with your class. Happy coding!

http://niiexplore.ca
https://scratch.mit.edu/projects/819337693
https://scratch.mit.edu/projects/675171912

mailto:explore%40nii.ca?subject=

View links and download digital materials at niiexplore.ca 6. 41

QUICK REFERENCE

Dance battle
animation
Students will animate a “dance battle” between an existing sprite and
one that they make themselves. The lesson will cover repeat loops and
subprograms (also known as functions or “My Blocks”).

SET UP

•	 Have students log into their Scratch accounts and open the student
link

•	 Open the student link and finished animation on your computer.
You will demo the finished version then work from the student version

THE CODE

The step numbers here correspond with the instructions on Pages 6.38 to
6.40. Sections marked in GREY are pre-populated for the students. Steps
marked in PINK will be added during the coding class.

QUICK LINKS

Student Activity Link
scratch.mit.edu/
projects/743978955

Finished Example
scratch.mit.edu/
projects/818524309

http://niiexplore.ca
https://scratch.mit.edu/projects/762738355

https://scratch.mit.edu/projects/743978955
https://scratch.mit.edu/projects/743978955
https://scratch.mit.edu/projects/818524309
https://scratch.mit.edu/projects/818524309
https://scratch.mit.edu/projects/724207614

View links and download digital materials at niiexplore.ca 6. 42

SPRITE 1 (ANINA) – MAIN PROGRAM

NOTE: Anina also has three pre-coded dance routines not shown here.
See Scratch file.

SPRITE 2 (STUDENT’S CHOICE)

NOTE: The messages in the “say” blocks are left up to the students.

Initialization – sets Anina’s
starting size, position,
orientation, and costume.

Sprite talks to
user before dance
begins.

Performs first dance.

Sends broadcast message
to cue SPRITE 2 to start its
dance.

Step 3. Add second dance to main program.

Step 5. Add third dance to main program.

Step 1. Initialize the new sprite’s
size, position, direction, and
costume.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 43

Step 2a. Create a subprogram
(My Block) for the first dance
routine. This simple routine
loops through all the sprite’s
available costumes. NOTE:
Number of repeats will depend
on the number of costumes the
sprite has (usually 12 or 13).

FIRST DANCE

Step 2b. After receiving the “your
turn” broadcast message from
Anina, sprite can say something
(optional) then perform first
dance routine.

Step 4b. Add second dance into
main program.

Step 6b. Add third dance into
main program.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 44

SECOND DANCE

Step 4a. Students can experiment with repeat loops,
costume changes, and wait commands to make their
own dance.

THIRD DANCE

Step 6a. Students can experiment with the same
commands as dance 2 plus motion and graphic effects.
They can also put previous pink blocks into this new
one (nesting).

NOTE: These dance routines are examples.
Students will come up with their own routines.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 45

OFFLINE ACTIVITY 3

Animation
storyboarding
30 MINUTES

Students will prepare for their final coding project by planning
an animated story.

LEARNING OBJECTIVES

•	 Create the storyboard for an original animation
•	 Plan a coding project

CURRICULUM CONNECTIONS

•	 Math C3.1 & C3.2 (Coding)
•	 Language - Writing

SET-UP

Print the worksheets for the Animation Storyboard and the Final Project on
the front and back of a single page. They will use the front for this activity
and the back for their final projects. Open this animation example on your
computer to show your students. Watch this video tutorial about the Final
Project.

INSTRUCTIONS

1. 	 Ask students to recall what they learned in the online coding classes.

2. 	 Explain the premise of the activity. SAY “You will be planning an
animation like the ones we made in our coding classes. The next time we
have the computers, you will be coding your animation in Scratch.”

3. 	 Show the animation example. ASK What kind of motions did they use?
Does this give you any ideas for your story?

	 NOTE: This animation is more complex than what students are expected
to make. It is meant to demonstrate many possibilities for what they
could include in their own work.

MATERIALS

Each student will need:

•	 Activity 3 worksheet

•	 Something to write with

http://niiexplore.ca
https://scratch.mit.edu/projects/726809210
https://www.youtube.com/watch?v=QFCISLf-Ffo

View links and download digital materials at niiexplore.ca 6. 46

4. 	 Hand out worksheets and review the instructions
together. Demonstrate how to fill in the storyboard.
They will sketch what each scene will roughly look
like, and write a description of what happens in
that scene.

	 There are guiding questions to help them plan each
scene. The storyboard will provide some structure
to their stories rather than being completely open-
ended. Remind them that they will be using Scratch
to make whatever they come up with.

5. 	 Give students time to work on their stories. Circle
the room to assist students as needed. You may
want to have Scratch open on your computer to
remind students of what characters and backdrops
are available if they need inspiration.

POSSIBLE PROMPTS

•	 How would this character move?

•	 Does your character have a name?

•	 What character would they meet?

•	 What kind of relationship do these characters
have? What would they say to each other?

•	 How do the characters interact with each
other? How do they move?

•	 What sound effects would make sense in this
scene?

•	 How could your story end?

6. 	 When students are finished their storyboards,
collect their worksheets. You will hand them back
out when you have computer time for the final
project.

http://niiexplore.ca

niiexplore.ca 6.47

Animation
storyboarding

ACTIVITY 3 WORKSHEET

This sheet will help you plan your animation. Use the boxes to sketch what each
scene will look like and then write a description of what happens. This is called a
storyboard.

Where does this scene happen?
Who is the main character?
What does the character look like?

What new character do we meet?
What do the characters say to
each other?

What does the first character do?
How does the second character
respond?

What do the characters do next?
How does the story end?

NAME

STORY TITLE

SCENE 1 - INTRODUCTION

SCENE 2 – NEW CHARACTER

SCENE 3 – INTERACTION

SCENE 4 – ENDING

http://niiexplore.ca

niiexplore.ca 6.48

Make your own animated short
FINAL PROJECT WORKSHEET

Now it’s time to turn your storyboard into a Scratch animation using code!

Your story should include:

 	 2 different sprites 	 A broadcast message

	 Costume changes 	 At least 2 types of motion, including change of x and y coordinates

	 A conversation 	 A repeating event

QUESTIONS

1. What’s a problem you had while coding? How did you try to fix it?

2. What is one new coding block you used? What does it do?

3. If you had more time, what would you add to your story?

Your code will have lots of parts, but be sure to use all these blocks:

Motion Control Events Looks

NAME

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 49

FINAL PROJECT

Make your own
animated short
60 MINUTES +

Students will apply their coding knowledge to make their own animated
short film. It’s a fun opportunity to demonstrate what they’ve learned.

LEARNING OBJECTIVES

•	 Build efficient Scratch code with many different block types
•	 Code with control structures, including loops and conditional statements
•	 Write the script and dialogue for an original story

CURRICULUM CONNECTIONS

•	 Math C3.1 & C3.2 (Coding)
•	 Media Literacy 3.4

SET-UP

Have students log onto computers and open their Scratch accounts.
Hand back storyboard sheets from Activity 3.

INSTRUCTIONS

SUMMARY
Students will be using their storyboards from Activity 3 and turning them
into an animation in Scratch. At the end, students will answer questions on
their worksheet, and save their code for you to assess. See ASSESSMENT on
Page 6.52.

1. 	 Reiterate challenge to students. “You will be using everything we’ve
learned about Scratch so far to make your own animated short.”

2. 	 Hand back their worksheets and review the instructions on the back. It
has a checklist of what elements to include in their animation and which
Scratch blocks to use.

3. 	 Have students create a new Scratch project. Remind them to name their
projects to make it easier to find later.

MATERIALS

Each student will need:

•	 Laptop or tablet

• 	 Scratch account

• 	 Storyboard worksheet
from Activity 3

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 50

4. 	 Give students the rest of the period to work on their
projects. Encourage students to try out different
blocks if they aren’t sure how to do something.
Remind them to follow their storyboard, but let
them know it’s okay to make changes if needed.

5. 	 Scratch will save their projects automatically
as long as they are logged into their account. If
students need more time, consider using another
computer period to finish.

6. 	 PROJECT SUBMISSION
Students will answer the reflection questions
on their worksheet and hand it in. On Scratch,
students will share their project, copy the link, and
send it to you. Make sure to leave time (about 10
minutes) to do this.

	 Check out our video tutorial for instructions
on sharing Scratch projects.

http://niiexplore.ca
https://www.youtube.com/watch?v=QFCISLf-Ffo&t=87s
https://www.youtube.com/watch?v=QFCISLf-Ffo&t=87s

View links and download digital materials at niiexplore.ca 6. 51

FINAL PROJECT

Assessment and evaluation
When students have sent you their Scratch projects, you can view their code by clicking the link and
then “See Inside”. If they have included it in their code, you will be able to start viewing their animation
by clicking the green flag. You can start your assessment by checking that the students used the
following elements in their animation:

 	 2 different sprites 	 A broadcast message

 	 Costume changes 	 At least 2 types of motion, including change of x and y
coordinates

 	 A conversation A repeating event

Next, you can look through their code to see which blocks they used. You can switch between sprites
by clicking on the sprite names in the bottom right corner. The students were asked to use all of these
blocks as a starting point:

Motion Control Events Looks

Students will probably use more blocks than the ones listed above, but these are the ones specified on
their worksheet.

Read through both their code and their worksheet responses, then use the
ASSESSMENT FRAMEWORK on the next page to evaluate their work.

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 52

Assessment framework
This chart will help you assess your students’ work during the Final Project and the Coding in the Classroom
program as a whole. It is based on the Ontario Mathematics (2020) curriculum.

KNOWLEDGE AND UNDERSTANDING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Knowledge of
content

Uses few required
block types in final
code
Does not answer
questions during
online classes, even
with assistance

Uses most required
block types in final
code
Answers questions
during online classes
with some assistance

Uses all required block
types in final code
Answers some
questions during
online classes

Uses all required block
types and some others
in final code
Answers many
questions during
online classes

Understanding of
content

Rarely uses control
structures (i.e., repeat
loops, conditional
statements, wait
commands) when
appropriate
Rarely looks for ways
to make code more
efficient

Sometimes uses
control structures
(i.e., repeat loops,
conditional
statements, wait
commands) when
appropriate
Sometimes looks for
ways to make code
more efficient

Often uses control
structures (i.e., repeat
loops, conditional
statements, wait
commands) when
appropriate
Often looks for ways
to make code more
efficient

Always uses control
structures (i.e., repeat
loops, conditional
statements, wait
commands) when
appropriate
Always looks for ways
to make code more
efficient

THINKING

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Use of planning
skills

Creates storyboard
with few of the
required elements

Creates storyboard
with some of the
required elements

Creates storyboard
with most of the
required elements

Creates storyboard
with all of the required
elements

Use of processing
skills

Uses code to convert
storyboard into
animation with limited
effectiveness

Uses code to convert
storyboard into
animation with some
effectiveness

Uses code to
convert storyboard
into animation
with considerable
effectiveness

Uses code to convert
storyboard into
animation with high
degree of effectiveness

Use of critical/
creative thinking
processes

Troubleshoots and
“debugs” code with
much assistance
Does not experiment
with blocks

Troubleshoots and
“debugs” code with
assistance
Experiments with
required block types

Troubleshoots and
“debugs” code with
some assistance
Experiments with
some new block types

Troubleshoots and
“debugs” code with
little assistance
Experiments with
many new block types

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 53

COMMUNICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Expression and
organization
of ideas and
information in
oral, visual, and/or
written forms

Uses some visual or
written elements

Does not clearly
express a story

Uses either visual or
written elements to
express an animated
story

Uses both visual and
written elements to
express an animated
story

Combines visual and
written elements to
express a cohesive,
animated story

Communication for
different audiences
and purposes in
oral, visual, and/or
written forms

Explains code
and animation,
either orally or in
writing, with limited
effectiveness

Explains code
and animation,
either orally or in
writing, with some
effectiveness

Explains code and
animation, either
orally or in writing,
with considerable
effectiveness

Explains code and
animation, either
orally or in writing,
with a high degree of
effectiveness

APPLICATION

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

Application of
knowledge and
skills in familiar
contexts

Follows coding lessons
with much assistance

Follows coding lessons
with assistance

Follows coding lessons
with some assistance

Follows coding lessons
with little or no
assistance

Application of
knowledge and
skills to new
contexts

Applies coding
knowledge to make
animation with much
assistance

Applies coding
knowledge to make
animation with
assistance

Applies coding
knowledge to make
animation with some
assistance

Applies coding
knowledge to make
animation with little or
no assistance

Making
connections within
and between
various contexts

Rarely participates
in “offline” coding
activities

Rarely makes
connections between
coding concepts and
everyday life

Participates somewhat
in “offline” coding
activities

Sometimes makes
connections between
coding concepts and
everyday life

Participates in “offline”
coding activities

Makes connections
between coding
concepts and everyday
life

Participates fully
in “offline” coding
activities

Often makes
connections between
coding concepts and
everyday life

http://niiexplore.ca

View links and download digital materials at niiexplore.ca 6. 54

Additional
resources
SCRATCH

Scratch has a series of activity guides under the “Ideas” tab. There are also
countless tutorials available on YouTube.

scratch.mit.edu/ideas

CANADA LEARNING CODE

From lesson plans to professional development, this website has a wealth
of resources for teaching coding.

canadalearningcode.ca

BLOCKLY GAMES

These coding games cover a range of topics. Blockly offers a mix of
block-based and text-based coding. The later levels of some lessons
are quite tricky, but the first few levels should be accessible for Grade 6
students.

blockly.games

*Coding screenshots are sourced from scratch.mit.edu/

Scratch

Canada Learning Code

Blockly Games

http://niiexplore.ca
https://scratch.mit.edu/ideas
https://www.canadalearningcode.ca/
https://blockly.games/
http://scratch.mit.edu/

